Two Molecular Plasma-Based Diagnostic Methods to Evaluate Early Infection of Schistosoma japonicum and Schistosomiasis Japonica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parasites and Animals
2.2. Sample Collection
2.3. DNA Extraction
2.4. The qPCR Assay for the Diagnosis of Schistosomiasis Japonica
2.5. Recombinase Polymerase Amplification (RPA) Combined with a Lateral-Flow Dipstick (-LFD Assay)
2.6. qPCR and RPA–LFD Detection of S. japonicum in Mice at Different Times after Infection and with Different Infection Intensities
2.7. Detection of S. japonicum in Goats with qPCR and RPA–LFD at Different Times after Infection
2.8. Data Analysis
3. Results
3.1. Detection Efficacy of qPCR in Mice with Different Infection Intensities
3.2. Detection Efficacy of qPCR for Schistosomiasis Japonica at Different Stages of Infection
3.3. Detection of S. japonicum with RPA–LFD Assay in Mice with Different Infection Intensities
3.4. Detection of Schistosomiasis Japonica at Different Stages with the RPA–LFD Assay
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- LoVerde, P.T. Schistosomiasis. Adv. Exp. Med. Biol. 2019, 1154, 45–70. [Google Scholar] [PubMed]
- Zhang, L.J.; Xu, Z.M.; Yang, F.; Dang, H.; Li, Y.L.; Lu, S.; Cao, C.L.; Xu, J.; Li, S.Z.; Zhou, X.N. [Endemic status of schistosomiasis in People’s Republic of China in 2020]. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 2021, 33, 225–233. [Google Scholar]
- Magalhaes, F.D.C.; Resende, S.D.; Senra, C.; Graeff-Teixeira, C.; Enk, M.J.; Coelho, P.M.Z.; Oliveira, E.; Negrao-Correa, D.A.; Geiger, S.M.; Carneiro, M. Accuracy of real-time polymerase chain reaction to detect Schistosoma mansoni—Infected individuals from an endemic area with low parasite loads. Parasitology 2020, 147, 1140–1148. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, L.; Yin, X.; Hua, W.; Hou, M.; Ji, M.; Yu, C.; Wu, G. Application of DNA-based diagnostics in detection of schistosomal DNA in early infection and after drug treatment. Parasit. Vectors 2011, 4, 164. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.M.; Rong, R.; Lu, Z.X.; Shi, C.J.; Xu, J.; Zhang, H.Q.; Gong, W.; Luo, W. Schistosoma japonicum: A PCR assay for the early detection and evaluation of treatment in a rabbit model. Exp. Parasitol. 2009, 121, 175–179. [Google Scholar] [CrossRef]
- Guegan, H.; Fillaux, J.; Charpentier, E.; Robert-Gangneux, F.; Chauvin, P.; Guemas, E.; Boissier, J.; Valentin, A.; Cassaing, S.; Gangneux, J.P.; et al. Real-time PCR for diagnosis of imported schistosomiasis. PLoS Negl. Trop. Dis. 2019, 13, e0007711. [Google Scholar] [CrossRef]
- Poulton, K.; Webster, B. Development of a lateral flow recombinase polymerase assay for the diagnosis of Schistosoma mansoni infections. Anal. Biochem. 2018, 546, 65–71. [Google Scholar] [CrossRef] [PubMed]
- de Dood, C.J.; Hoekstra, P.T.; Mngara, J.; Kalluvya, S.E.; van Dam, G.J.; Downs, J.A.; Corstjens, P. Refining Diagnosis of Schistosoma haematobium Infections: Antigen and Antibody Detection in Urine. Front. Immunol. 2018, 9, 2635. [Google Scholar] [CrossRef]
- Cai, P.; Weerakoon, K.G.; Mu, Y.; Olveda, R.M.; Ross, A.G.; Olveda, D.U.; McManus, D.P. Comparison of Kato Katz, antibody-based ELISA and droplet digital PCR diagnosis of schistosomiasis japonica: Lessons learnt from a setting of low infection intensity. PLoS Negl. Trop. Dis. 2019, 13, e0007228. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, C.; Zhou, K.; Li, Y.; Tong, L.; Yue, Y.; Zhou, K.; Liu, J.; Fu, Z.; Lin, J.; et al. Evaluation of a real-time PCR assay for diagnosis of schistosomiasis japonica in the domestic goat. Parasit. Vectors 2020, 13, 535. [Google Scholar] [CrossRef]
- Fernandez-Soto, P.; Gandasegui, J.; Carranza Rodriguez, C.; Perez-Arellano, J.L.; Crego-Vicente, B.; Garcia-Bernalt Diego, J.; Lopez-Aban, J.; Vicente, B.; Muro, A. Detection of Schistosoma mansoni-derived DNA in human urine samples by loop-mediated isothermal amplification (LAMP). PLoS ONE 2019, 14, e0214125. [Google Scholar] [CrossRef] [PubMed]
- Ogongo, P.; Kariuki, T.M.; Wilson, R.A. Diagnosis of schistosomiasis mansoni: An evaluation of existing methods and research towards single worm pair detection. Parasitology 2018, 145, 1355–1366. [Google Scholar] [CrossRef] [PubMed]
- Ajibola, O.; Gulumbe, B.H.; Eze, A.A.; Obishakin, E. Tools for Detection of Schistosomiasis in Resource Limited Settings. Med. Sci. 2018, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Halili, S.; Grant, J.R.; Pilotte, N.; Gordon, C.A.; Williams, S.A. Development of a novel real-time polymerase chain reaction assay for the sensitive detection of Schistosoma japonicum in human stool. PLoS Negl. Trop. Dis. 2021, 15, e0009877. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, W.J.; Magalhaes, F.D.C.; Elias, A.M.S.; de Castro, V.N.; Favero, V.; Lindholz, C.G.; Oliveira, A.A.; Barbosa, F.S.; Gil, F.; Gomes, M.A.; et al. Evaluation of diagnostic methods for the detection of intestinal schistosomiasis in endemic areas with low parasite loads: Saline gradient, Helmintex, Kato-Katz and rapid urine test. PLoS Negl. Trop. Dis. 2018, 12, e0006232. [Google Scholar] [CrossRef] [PubMed]
- Graeff-Teixeira, C.; Favero, V.; Pascoal, V.F.; de Souza, R.P.; Rigo, F.V.; Agnese, L.H.D.; Bezerra, F.S.M.; Coelho, P.M.Z.; Enk, M.J.; Favre, T.C.; et al. Low specificity of point-of-care circulating cathodic antigen (POCCCA) diagnostic test in a non-endemic area for schistosomiasis mansoni in Brazil. Acta Trop. 2021, 217, 105863. [Google Scholar] [CrossRef]
- Cai, P.; Mu, Y.; Weerakoon, K.G.; Olveda, R.M.; Ross, A.G.; McManus, D.P. Performance of the point-of-care circulating cathodic antigen test in the diagnosis of schistosomiasis japonica in a human cohort from Northern Samar, the Philippines. Infect. Dis. Poverty 2021, 10, 121. [Google Scholar] [CrossRef]
- Macalanda, A.M.C.; Angeles, J.M.M.; Moendeg, K.J.; Dang-Trinh, M.A.; Higuchi, L.; Kirinoki, M.; Chigusa, Y.; Leonardo, L.R.; Villacorte, E.A.; Rivera, P.T.; et al. Schistosoma japonicum cathepsin B as potential diagnostic antigen for Asian zoonotic schistosomiasis. Parasitol. Res. 2019, 118, 2601–2608. [Google Scholar] [CrossRef]
- Allam, A.F.; Salem, A.; Elsheredy, A.; Dewair, M.M.; Ibrahim, H.S.; Farag, H.F.; Hagras, N.A.; Shehab, A.Y. Intestinal schistosomiasis among preschool and school-aged children in a rural setting near Alexandria: Initiative for elimination. Trop. Med. Int. Health 2021, 26, 632–639. [Google Scholar] [CrossRef]
- Frickmann, H.; Loderstadt, U.; Nickel, B.; Poppert, S.; Odermatt, P.; Sayasone, S.; Van Esbroeck, M.; Micalessi, I.; Cnops, L.; Adisakwattana, P.; et al. Low Sensitivity of Real Time PCRs Targeting Retrotransposon Sequences for the Detection of Schistosoma japonicum Complex DNA in Human Serum. Pathogens 2021, 10, 1067. [Google Scholar] [CrossRef]
- Weerakoon, K.G.; Gordon, C.A.; McManus, D.P. DNA Diagnostics for Schistosomiasis Control. Trop. Med. Infect. Dis. 2018, 3, 81. [Google Scholar] [CrossRef] [PubMed]
- Weerakoon, K.G.; McManus, D.P. Cell-Free DNA as a Diagnostic Tool for Human Parasitic Infections. Trends Parasitol. 2016, 32, 378–391. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Rong, R.; Zhang, H.Q.; Shi, C.J.; Zhu, X.Q.; Xia, C.M. Sensitive and rapid detection of Schistosoma japonicum DNA by loop-mediated isothermal amplification (LAMP). Int. J. Parasitol. 2010, 40, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; He, C.C.; Liu, J.M.; Li, H.; Lu, K.; Fu, Z.Q.; Zhu, C.G.; Liu, Y.P.; Tong, L.B.; Zhou, D.B.; et al. Nested-PCR assay for detection of Schistosoma japonicum infection in domestic animals. Infect. Dis. Poverty 2017, 6, 86. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, K.; Chen, C.; Yue, Y.; Shang, Z.; Zhou, K.; Fu, Z.; Liu, J.; Lin, J.; Xia, C.; et al. Development of a Recombinase Polymerase Amplification Assay for Schistosomiasis Japonica Diagnosis in the Experimental Mice and Domestic Goats. Front. Cell. Infect. Microbiol. 2021, 11, 791997. [Google Scholar] [CrossRef]
- Allam, A.F.; Kamel, M.A.; Farag, H.F.; Raheem, H.G.; Shehab, A.Y.; Hagras, N.A. Performance of loop-mediated isothermal amplification (LAMP) for detection of Schistosoma mansoni infection compared with Kato-Katz and real-time PCR. J. Helminthol. 2022, 96, e28. [Google Scholar] [CrossRef]
- Ramirez-Castillo, F.Y.; Loera-Muro, A.; Jacques, M.; Garneau, P.; Avelar-Gonzalez, F.J.; Harel, J.; Guerrero-Barrera, A.L. Waterborne pathogens: Detection methods and challenges. Pathogens 2015, 4, 307–334. [Google Scholar] [CrossRef]
- Sun, K.; Xing, W.; Yu, X.; Fu, W.; Wang, Y.; Zou, M.; Luo, Z.; Xu, D. Recombinase polymerase amplification combined with a lateral flow dipstick for rapid and visual detection of Schistosoma japonicum. Parasit. Vectors 2016, 9, 476. [Google Scholar] [CrossRef]
- Rosser, A.; Rollinson, D.; Forrest, M.; Webster, B.L. Isothermal Recombinase Polymerase amplification (RPA) of Schistosoma haematobium DNA and oligochromatographic lateral flow detection. Parasit. Vectors 2015, 8, 446. [Google Scholar] [CrossRef]
- Kato-Hayashi, N.; Leonardo, L.R.; Arevalo, N.L.; Tagum, M.N.; Apin, J.; Agsolid, L.M.; Chua, J.C.; Villacorte, E.A.; Kirinoki, M.; Kikuchi, M.; et al. Detection of active schistosome infection by cell-free circulating DNA of Schistosoma japonicum in highly endemic areas in Sorsogon Province, the Philippines. Acta Trop. 2015, 141 Pt B, 178–183. [Google Scholar] [CrossRef]
- Chieng, B.; Okoyo, C.; Simiyu, E.; Gichuki, P.; Mwatele, C.; Kepha, S.; Njenga, S.; Mburu, D. Comparison of quantitative polymerase chain reaction, Kato-Katz and circulating cathodic antigen rapid test for the diagnosis of Schistosoma mansoni infection: A cross-sectional study in Kirinyaga County, Kenya. Curr. Res. Parasitol. Vector Borne Dis. 2021, 1, 100029. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, A.P.; Guo, J.J.; Wang, B.; Qiu, S.J.; Sun, H.; Guan, W.; Zhu, X.Q.; Xia, C.M.; Wu, Z.D. The sources and metabolic dynamics of Schistosoma japonicum DNA in serum of the host. Parasitol. Res. 2013, 112, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Duan, Z.L.; Guan, Z.X.; Wang, Y.Y.; Lin, C.; Zhang, T.T.; Zhang, H.Q.; Qian, X.; Xia, C.M. Early detection of circulating DNA of Schistosoma japonicum in sentinel mice models. Exp. Parasitol. 2017, 176, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, S.G.; Lugli, E.B.; Matera, G.; Fonseca, C.T.; Caldeira, R.L.; Webster, B. Development of real-time and lateral flow recombinase polymerase amplification assays for rapid detection of Schistosoma mansoni. Front. Microbiol. 2022, 13, 1043596. [Google Scholar] [CrossRef] [PubMed]
Time (p.i.) | Infected with Five Cercariae | Infected with Ten Cercariae | Infected with 40 Cercariae |
---|---|---|---|
Positive Rate (No. of Positive Samples/No. of Total Samples) | Positive Rate (No. of Positive Samples/No. of Total Samples) | Positive Rate (No. of Positive Samples/No. of Total Samples) | |
1 d | 22.2% (2/9) | 20.0% (2/10) | 25.0% (2/8) |
2 d | 22.2% (2/9) | 20.0% (2/10) | 50.0% (4/8) |
3 d | 44.4% (4/9) | 40.0% (4/10) | 50.0% (4/8) |
4 d | 22.2% (2/9) | 50.0% (5/10) | 75.0% (6/8) |
5 d | 22.2% (2/9) | 30.0% (3/10) | 37.5% (3/8) |
6 d | 33.3% (3/9) | 30.0% (3/10) | 50.0% (4/8) |
7 d | 44.4% (4/9) | 20.0% (2/10) | 50.0% (4/8) |
10 d | 0% (0/9) | 0% (0/10) | 12.5% (1/8) |
14 d | 0% (0/9) | 0% (0/10) | 12.5% (1/8) |
20 d | 0% (0/9) | 0% (0/10) | 25.0% (2/8) |
30 d | 33.3% (3/9) | 40.0% (4/10) | 87.5% (7/8) |
40 d | 77.8% (7/9) | 90.0% (9/10) | 100.0% (8/8) |
Mouse No. | Infected with Five Cercariae | Infected with Ten Cercariae | Infected with 40 Cercariae | ||||||
---|---|---|---|---|---|---|---|---|---|
Pair | Single | Total | Pair | Single | Total | Pair | Single | Total | |
1 | 1 | 1 | 3 | 3 | 1 | 7 | 10 | 1 | 21 |
2 | 2 | 0 | 4 | 3 | 1 | 7 | 5 | 3 | 13 |
3 | 1 | 1 | 3 | 1 | 3 | 5 | 8 | 3 | 19 |
4 | 0 | 2 | 2 | 1 | 2 | 4 | 4 | 3 | 11 |
5 | 1 | 0 | 2 | 1 | 2 | 4 | 6 | 1 | 13 |
6 | 2 | 0 | 4 | 3 | 2 | 8 | 9 | 2 | 20 |
7 | 1 | 0 | 2 | 2 | 0 | 4 | 10 | 1 | 21 |
8 | 1 | 0 | 2 | 3 | 0 | 6 | 17 | 3 | 37 |
9 | 2 | 0 | 4 | 2 | 2 | 6 | \ | \ | \ |
10 | \ | \ | \ | 2 | 0 | 4 | \ | \ | \ |
Time (p.i.) | qPCR | RPA–LFD |
---|---|---|
Positive Rate (No. of Positive Samples/No. of Total Samples) | Positive Rate (No. of Positive Samples/No. of Total Samples) | |
1 d | 12.5% (1/8) | 37.5% (3/8) |
2 d | 25.0% (2/8) | 0% (0/8) |
3 d | 50.0% (4/8) | 25.0% (2/8) |
4 d | 12.5% (1/8) | 25.0% (2/8) |
5 d | 12.5% (1/8) | 0% (0/8) |
6 d | 0% (0/8) | 0% (0/8) |
7 d | 0% (0/8) | 12.5% (1/8) |
14 d | 12.5% (1/8) | 0% (0/8) |
24 d | 12.5% (1/8) | 0% (0/8) |
56 d | 100.0% (8/8) | 100.0% (8/8) |
Goat No. | Pair | Single | Total |
---|---|---|---|
1 | 27 | 11 | 65 |
2 | 2 | 2 | 6 |
3 | 2 | 2 | 6 |
4 | 11 | 0 | 24 |
5 | 8 | 12 | 28 |
6 | 6 | 1 | 13 |
7 | 4 | 9 | 17 |
8 | 31 | 70 | 132 |
Time (p.i.) | Infected with Five Cercariae | Infected with Ten Cercariae | Infected with 40 Cercariae |
---|---|---|---|
Positive Rate (No. of Positive Samples/No. of Total Samples) | Positive Rate (No. of Positive Samples/No. of Total Samples) | Positive Rate (No. of Positive Samples/No. of Total Samples) | |
1 d | 0% (0/9) | 0% (0/10) | 0% (0/8) |
2 d | 0% (0/9) | 10.0% (1/10) | 0% (0/8) |
3 d | 0% (0/9) | 10.0% (1/10) | 0% (0/8) |
4 d | 22.2% (2/9) | 60.0% (6/10) | 25.0% (2/8) |
5 d | 22.2% (2/9) | 30.0% (3/10) | 37.5% (3/8) |
6 d | 22.2% (2/9) | 10.0% (1/10) | 12.5% (1/8) |
7 d | 0% (0/9) | 10.0% (1/10) | 0% (0/8) |
10 d | 0% (0/9) | 0% (0/10) | 0% (0/8) |
14 d | 0% (0/9) | 0% (0/10) | 0% (0/8) |
20 d | 33.3% (3/9) | 40.0% (4/10) | 37.5% (3/8) |
30 d | 33.3% (3/9) | 50.0% (5/10) | 87.5% (7/8) |
40 d | 55.6% (5/9) | 80.0% (8/10) | 100.0% (8/8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; Guo, Q.; Zhou, X.; Tang, L.; Chen, C.; Shang, Z.; Zhou, K.; Zhang, Z.; Liu, J.; Lin, J.; et al. Two Molecular Plasma-Based Diagnostic Methods to Evaluate Early Infection of Schistosoma japonicum and Schistosomiasis Japonica. Microorganisms 2023, 11, 1059. https://doi.org/10.3390/microorganisms11041059
Hong Y, Guo Q, Zhou X, Tang L, Chen C, Shang Z, Zhou K, Zhang Z, Liu J, Lin J, et al. Two Molecular Plasma-Based Diagnostic Methods to Evaluate Early Infection of Schistosoma japonicum and Schistosomiasis Japonica. Microorganisms. 2023; 11(4):1059. https://doi.org/10.3390/microorganisms11041059
Chicago/Turabian StyleHong, Yang, Qinghong Guo, Xue Zhou, Liying Tang, Cheng Chen, Zheng Shang, Kerou Zhou, Zhizhong Zhang, Jinming Liu, Jiaojiao Lin, and et al. 2023. "Two Molecular Plasma-Based Diagnostic Methods to Evaluate Early Infection of Schistosoma japonicum and Schistosomiasis Japonica" Microorganisms 11, no. 4: 1059. https://doi.org/10.3390/microorganisms11041059
APA StyleHong, Y., Guo, Q., Zhou, X., Tang, L., Chen, C., Shang, Z., Zhou, K., Zhang, Z., Liu, J., Lin, J., Xu, B., Chen, J.-H., Fu, Z., & Hu, W. (2023). Two Molecular Plasma-Based Diagnostic Methods to Evaluate Early Infection of Schistosoma japonicum and Schistosomiasis Japonica. Microorganisms, 11(4), 1059. https://doi.org/10.3390/microorganisms11041059