Analysis of Industrial Bacillus Species as Potential Probiotics for Dietary Supplements
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacteria, Reagents and Equipment
2.2. Bacterial Isolation and Cultivation
2.3. Microscopic and Quantitative Morphological Analysis of Bacteria
2.4. MALDI-TOF Bacterial Species Identification
2.5. Antagonistic Activities
2.6. Antibiotics Susceptibility
2.7. TP-84 Bacteriophage Sensitivity Tests
2.8. Statistical Analysis
3. Results
3.1. Selection and Quantification of Bacterial Cultures
3.2. Characteristics of Bacterial Cultures, Colonies and Bacterial Cells
3.3. MALDI-TOF Mass Spectrometry Analysis of Bacteria
3.4. Antagonistic Effect of Foodborne Pathogenic Bacteria in the Presence of CFS from Bacillus Strains
3.5. Antibiotic Resistance
3.6. TP-84 Bacteriophage Sensitivity Tests
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jeżewska-Frąckowiak, J.; Seroczyńska, K.; Banaszczyk, J.; Jedrzejczak, G.; Żylicz-Stachula, A.; Skowron, P.M. The promises and risks of probiotic Bacillus species. Acta Biochim. Pol. 2018, 65, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Gopikrishna, T.; Suresh Kumar, H.K.; Perumal, K.; Elangovan, E. Impact of Bacillus in fermented soybean foods on human health. Ann. Microbiol. 2021, 71, 30. [Google Scholar] [CrossRef]
- Cutting, S.M. Bacillus probiotics. Food Microbiol. 2011, 28, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Sornplang, P.; Piyadeatsoontorn, S. Probiotic isolates from unconventional sources: A review. J. Anim. Sci. Technol. 2016, 58, 26. [Google Scholar] [CrossRef] [PubMed]
- Schallmey, M.; Singh, A.; Ward, O.P. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 2004, 50, 1–17. [Google Scholar] [CrossRef]
- Raul, D.; Biswas, T.; Mukhopadhyay, S.; Kumar Das, S.; Gupta, S. Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121) Using Solid State Fermentation. Biochem. Res. Int. 2014, 2014, 568141. [Google Scholar] [CrossRef]
- Jezewska-Frackowiak, J.; Seroczynska, K.; Banaszczyk, J.; Wozniak, D.; Skowron, M.; Ozog, A.; Zylicz-Stachula, A.; Ossowski, T.; Skowron, P.M. Detection of endospore producing Bacillus species from commercial probiotics and their preliminary microbiological characterization. J. Environ. Biol. 2017, 38, 1435–1440. [Google Scholar] [CrossRef]
- Yao, M.; Xie, J.; Du, H.; McClements, D.J.; Xiao, H.; Li, L. Progress in microencapsulation of probiotics: A review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 857–874. [Google Scholar] [CrossRef]
- Goderska, K. Different methods of probiotics stabilization. In Probiotics; Rigobelo, E., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Kiepś, J.; Dembczyński, R. Current Trends in the Production of Probiotic Formulations. Foods 2022, 11, 2330. [Google Scholar] [CrossRef]
- Šipailienė, A.; Petraitytė, S. Encapsulation of Probiotics: Proper Selection of the Probiotic Strain and the Influence of Encapsulation Technology and Materials on the Viability of Encapsulated Microorganisms. Probiotics Antimicrob. Proteins 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Mantzouridou, F.; Spanou, A.; Kiosseoglou, V. An inulin-based dressing emulsion as a potential probiotic food carrier. Food Res. Int. 2012, 46, 260–269. [Google Scholar] [CrossRef]
- Skowron, P.M.; Kropinski, A.M.; Zebrowska, J.; Janus, L.; Szemiako, K.; Czajkowska, E.; Maciejewska, N.; Skowron, M.; Łoś, J.; Łoś, M.; et al. Correction: Sequence, genome organization, annotation and proteomics of the thermophilic, 47.7-kb Geobacillus stearothermophilus bacteriophage TP-84 and its classification in the new Tp84virus genus. PLoS ONE 2018, 13, e0196798, Erratum in PLoS ONE 2018, 13, e0195449. [Google Scholar] [CrossRef]
- Skowron, P.M.; Krawczun, N.; Żebrowska, J.; Krefft, D.; Żołnierkiewicz, O.; Bielawa, M.; Jeżewska-Frąckowiak, J.; Janus, Ł.; Witkowska, M.; Palczewska, M.; et al. A vector-enzymatic DNA fragment amplification-expression technology for construction of artificial, concatemeric DNA, RNA and proteins for novel biomaterials, biomedical and industrial applications. Mater. Sci. Eng. C 2020, 108, 110426. [Google Scholar] [CrossRef]
- Available online: https://science.umd.edu/CBMG/faculty/asmith/BSCI223/lab3.pdf (accessed on 2 November 2022).
- Schaeffer, A.B.; Fulton, M.D. A Simplified Method of Staining Endospores. Science 1933, 77, 194. [Google Scholar] [CrossRef]
- Maneval, W.E. Staining bacteria and yeast with acid dyes. Stain Technol. 1941, 16, 13–19. [Google Scholar] [CrossRef]
- Kunicki–Goldfinger, W. The Life of Bacteria; PWN Scientific Publishing House: Warsaw, Poland, 1998; ISBN 978-83-01-14378-7. [Google Scholar]
- Jeżewska-Frąckowiak, J.; Żebrowska, J.; Czajkowska, E.; Jasińska, J.; Pęksa, M.; Jędrzejczak, G.; Skowron, P.M. Identification of bacterial species in probiotic consortiums in selected commercial cleaning preparations. Acta Biochim. Pol. 2019, 66, 215–222. [Google Scholar] [CrossRef]
- Wikins, T.D.; Holdeman, L.V.; Abramson, I.J.; Moore, W.E. Standardized single-disc method for antibiotic susceptibility testing of anaerobic bacteria. Antimicrob. Agents Chemother. 1972, 1, 451–459. [Google Scholar] [CrossRef]
- Berkeley, R.M.; Heyndrickx, N.L.; De Vos, P. Applications and Systematics of Bacillus and Relatives; Wiley-Blackwell: Oxford, UK, 2008. [Google Scholar]
- Kearns, D.B.; Losick, R. Cell population heterogeneity during growth of Bacillus subtilis. Genes 2005, 19, 3083–3094. [Google Scholar] [CrossRef]
- Lim, E.S.; Baek, S.Y.; Oh, T.; Koo, M.; Lee, J.Y.; Kim, H.J.; Kim, J.S. Strain variation in Bacillus cereus biofilms and their susceptibility to extracellular matrix-degrading enzymes. PLoS ONE 2021, 16, e0245708. [Google Scholar] [CrossRef]
- Liu, J.; He, D.; Li, X.Z.; Gao, S.; Wu, H.; Liu, W.; Gao, X.; Zhou, T. Gamma-polyglutamic acid (gamma-PGA) produced by Bacillus amyloliquefaciens C06 promoting its colonization on fruit surface. Int. J. Food Microbiol. 2010, 142, 190–197. [Google Scholar] [CrossRef]
- Azarko, J.; Wendt, U. Identyfikacja drobnoustrojów—Porównanie metody biochemicznej i spektrometrii masowej. Diagn. Lab. 2011, 47, 409–417. [Google Scholar]
- Kosikowska, P.; Pikula, M.; Langa, P.; Trzonkowski, P.; Obuchowski, M.; Lesner, A. Synthesis and Evaluation of Biological Activity of Antimicrobial--Pro-Proliferative Peptide Conjugates. PLoS ONE 2015, 10, e0140377. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; Bhuiyan, M.N.I. Antagonistic activity of Bacillus amyloliquefaciens subspecies Amyloliquefaciens against multidrug resistant Serratia rubidaea. BioRxiv 2019. [CrossRef]
- Elshaghabee, F.M.F.; Rokana, N.; Gulhane, R.D.; Sharma, C.; Panwar, H. Bacillus as Potential Probiotics: Status, Concerns, and Future Perspectives. Front. Microbiol. 2017, 8, 1490. [Google Scholar] [CrossRef]
- Huys, G.; D’Haene, K.; Swings, J. Influence of the culture medium on antibiotic susceptibility testing of food-associated lactic acid bacteria with the agar overlay disc diffusion method. Lett. Appl. Microbiol. 2002, 34, 402–406. [Google Scholar] [CrossRef]
- Al Kassaa, I.; Hober, D.; Hamze, M.; Chihib, N.E.; Drider, D. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob. Proteins 2014, 6, 177–185. [Google Scholar] [CrossRef]
- Coppi, F.; Ruoppolo, M.; Mandressi, A.; Bellorofonte, C.; Gonnella, G.; Trinchieri, A. Results of treatment with Bacillus subtilis spores (Enterogermina) after antibiotic therapy in 95 patients with infection calculosis. Chemioterapia 1985, 4, 467–470. [Google Scholar]
- Bernardeau, M.; Lehtinen, M.J.; Forssten, S.D.; Nurminen, P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J. Food Sci. Technol. 2017, 54, 2570–2584. [Google Scholar] [CrossRef]
- UK Standards for Microbiology Investigations. Identification of Bacillus species. In Bacteriology—Identification 9; Standards Unit, PHE, Microbiology Services; Public Health England: London, UK, 2015; pp. 1–27. [Google Scholar]
- Romo-Barrera, C.M.; Castrillón-Rivera, L.E.; Palma-Ramos, A.; Castañeda-Sánchez, J.I.; Luna-Herrera, J. Bacillus licheniformis and Bacillus subtilis, Probiotics That Induce the Formation of Macrophage Extracellular Traps. Microorganisms 2021, 9, 2027. [Google Scholar] [CrossRef]
- Hill, J.E.; Baiano, J.C.F.; Barnes, A.C. Isolation of a novel strain of “B. pumilus” from penaeid shrimp that is inhibitory against marine pathogens. J. Fish Dis. 2009, 32, 1007–1016. [Google Scholar] [CrossRef]
- Zakowska, D.; Bartoszcze, M.; Niemcewicz, M.; Bielawska-Drózd, A.; Kocik, J. New aspects of the infection mechanisms of Bacillus anthracis. Ann. Agric. Environ. Med. 2012, 19, 613–618. [Google Scholar]
- Pals, K.L.; Chang, R.T.; Ryan, A.J.; Gisolfi, C.V. Effect of running intensity on intestinal permeability. J. Appl. Physiol. 1985, 82, 571–576. [Google Scholar] [CrossRef]
Bacillus Species | Antibiotics | |||||||
---|---|---|---|---|---|---|---|---|
K | S | C | AM | SAM | OX | B | RA | |
B. subtilis | S | ND | S | R | S | S | S | S |
B. atrophaeus | S * | ND * | S * | R * | ND * | S * | ND * | S * |
B. cereus | ND | ND | S | R | ND | ND | R | S |
B. licheniformis | ND * | R * | S * | R * | ND * | ND * | R * | ND * |
B. pumilus | S * | S * | S * | S * | S * | S * | R * | S * |
B. amyloliquefaciens | ND | ND | ND | ND | ND | ND | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łubkowska, B.; Jeżewska-Frąckowiak, J.; Sroczyński, M.; Dzitkowska-Zabielska, M.; Bojarczuk, A.; Skowron, P.M.; Cięszczyk, P. Analysis of Industrial Bacillus Species as Potential Probiotics for Dietary Supplements. Microorganisms 2023, 11, 488. https://doi.org/10.3390/microorganisms11020488
Łubkowska B, Jeżewska-Frąckowiak J, Sroczyński M, Dzitkowska-Zabielska M, Bojarczuk A, Skowron PM, Cięszczyk P. Analysis of Industrial Bacillus Species as Potential Probiotics for Dietary Supplements. Microorganisms. 2023; 11(2):488. https://doi.org/10.3390/microorganisms11020488
Chicago/Turabian StyleŁubkowska, Beata, Joanna Jeżewska-Frąckowiak, Michał Sroczyński, Magdalena Dzitkowska-Zabielska, Aleksandra Bojarczuk, Piotr M. Skowron, and Paweł Cięszczyk. 2023. "Analysis of Industrial Bacillus Species as Potential Probiotics for Dietary Supplements" Microorganisms 11, no. 2: 488. https://doi.org/10.3390/microorganisms11020488
APA StyleŁubkowska, B., Jeżewska-Frąckowiak, J., Sroczyński, M., Dzitkowska-Zabielska, M., Bojarczuk, A., Skowron, P. M., & Cięszczyk, P. (2023). Analysis of Industrial Bacillus Species as Potential Probiotics for Dietary Supplements. Microorganisms, 11(2), 488. https://doi.org/10.3390/microorganisms11020488