Molecular Approach for the Laboratory Diagnosis of Periprosthetic Joint Infections
Abstract
:1. Introduction
2. Epidemiology of Periprosthetic Joint Infections
3. Periprosthetic Joint Infections Definition
4. Periprosthetic Joint Infections Classification
- Staphylococcus aureus, from skin and soft tissues infections that possibly leads to bacteraemia up to 34%;
- Streptococcus pneumoniae, spreading from respiratory tract;
- Salmonella, Bacteroides, Streptococcus gallolyticus from gastrointestinal infections;
- Escherichia coli, Klebsiella, Enterobacter spp. Affecting the urinary tract.
5. Periprosthetic Joint Infections Biofilm
6. Periprosthetic Joint Infections Diagnosis
7. Periprosthetic Joint Infections Molecular Diagnosis
8. Periprosthetic Joint Infections Sequencing
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Premkumar, A.; Morse, K.; Levack, A.E.; Bostrom, M.P.; Carli, A.V. Periprosthetic Joint Infection in Patients with Inflammatory Joint Disease: Prevention and Diagnosis. Curr. Rheumatol. Rep. 2018, 20, 68. [Google Scholar] [CrossRef]
- Nair, R.; Schweizer, M.L.; Singh, N. Septic Arthritis and Prosthetic Joint Infections in Older Adults. Infect. Dis. Clin. N. Am. 2017, 31, 715–729. [Google Scholar] [CrossRef] [PubMed]
- Tsaras, G.; Osmon, D.R.; Mabry, T.; Lahr, B.; Sauver, J.S.; Yawn, B.; Kurland, R.; Berbari, E.F. Incidence, secular trends, and outcomes of prosthetic joint infection: A population-based study, olmsted county, Minnesota, 1969–2007. Infect. Control Hosp. Epidemiol. 2012, 33, 1207–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvieux, C.; Common, H. New diagnostic tools for prosthetic joint infection. Orthop. Traumatol. Surg. Res. 2019, 105, S23–S30. [Google Scholar] [CrossRef] [PubMed]
- Stylianakis, A.; Schinas, G.; Thomaidis, P.C.; Papaparaskevas, J.; Ziogas, D.C.; Gamaletsou, M.N.; Daikos, G.L.; Pneumaticos, S.; Sipsas, N.V. Combination of conventional culture, vial culture, and broad-range PCR of sonication fluid for the diagnosis of prosthetic joint infection. Diagn. Microbiol. Infect. Dis. 2018, 92, 13–18. [Google Scholar] [CrossRef]
- Corvec, S.; Portillo, M.E.; Pasticci, B.M.; Borens, O.; Trampuz, A. Epidemiology and new developments in the diagnosis of prosthetic joint infection. Int. J. Artif. Organs 2012, 35, 923–934. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Huang, C.; Lin, Y.; Chen, Y.; Fang, X.; Huang, Z.; Zhang, C.; Zhang, Z.; Zhang, W. Clinical Outcomes of Culture-Negative and Culture-Positive Periprosthetic Joint Infection: Similar Success Rate, Different Incidence of Complications. Orthop. Surg. 2022, 14, 1420–1427. [Google Scholar] [CrossRef]
- Premkumar, A.; Kolin, D.A.; Farley, K.X.; Wilson, J.M.; McLawhorn, A.S.; Cross, M.B.; Sculco, P.K. Projected Economic Burden of Periprosthetic Joint Infection of the Hip and Knee in the United States. J. Arthroplast. 2021, 36, 1484–1489.e3. [Google Scholar] [CrossRef]
- Parvizi, J.; Gehrke, T.; International Consensus Group on Periprosthetic Joint Infection. Definition of periprosthetic joint infection. J. Arthroplast. 2014, 29, 1331. [Google Scholar] [CrossRef] [Green Version]
- Izakovicova, P.; Borens, O.; Trampuz, A. Periprosthetic joint infection: Current concepts and outlook. EFORT Open Rev. 2019, 4, 482–494. [Google Scholar] [CrossRef]
- McNally, M.; Sousa, R.; Wouthuyzen-Bakker, M.; Chen, A.F.; Soriano, A.; Vogely, H.C.; Clauss, M.; Higuera, C.A.; Trebše, R. The EBJIS definition of periprosthetic joint infection. Bone Jt. J. 2021, 103, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Zannoli, S.; Sambri, A.; Morotti, M.; Tassinari, M.; Torri, A.; Bianchi, G.; De Paolis, M.; Donati, D.M.; Sambri, V. Unyvero ITI® system for the clinical resolution of discrepancies in periprosthetic joint infection diagnosis. Musculoskelet. Surg. 2021, 105, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Tande, A.J.; Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, M.P.; Gililland, J.M.; Blackburn, B.E.; Anderson, L.A.; Pelt, C.E.; Certain, L.K. Extended Oral Antibiotics Increase Bacterial Resistance in Patients Who Fail 2-Stage Exchange for Periprosthetic Joint Infection. J. Arthroplast. 2022, 37, S989–S996. [Google Scholar] [CrossRef] [PubMed]
- Scholz, C.F.P.; Kilian, M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 4422–4432. [Google Scholar] [CrossRef]
- Dréno, B.; Pécastaings, S.; Corvec, S.; Veraldi, S.; Khammari, A.; Roques, C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: A brief look at the latest updates. J. Eur. Acad. Dermatol. Venereol. 2018, 32 (Suppl. S2), 5–14. [Google Scholar] [CrossRef] [Green Version]
- Hsu, J.E.; Matsen, F.A., 3rd; Whitson, A.J.; Bumgarner, R.E. Cutibacterium subtype distribution on the skin of primary and revision shoulder arthroplasty patients. J. Shoulder Elb. Surg. 2020, 29, 2051–2055. [Google Scholar] [CrossRef]
- Askar, M.; Bloch, B.; Bayston, R. Small-colony variant of Staphylococcus lugdunensis in prosthetic joint infection. Arthroplast. Today 2018, 4, 257–260. [Google Scholar] [CrossRef] [Green Version]
- Gross, C.E.; Della Valle, C.J.; Rex, J.C.; Traven, S.A.; Durante, E.C. Fungal Periprosthetic Joint Infection: A Review of Demographics and Management. J. Arthroplast. 2021, 36, 1758–1764. [Google Scholar] [CrossRef]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [Green Version]
- Hamad, C.; Chowdhry, M.; Sindeldecker, D.; Bernthal, N.M.; Stoodley, P.; McPherson, E.J. Adaptive antimicrobial resistance, a description of microbial variants, and their relevance to periprosthetic joint infection. Bone Jt. J. 2022, 104, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Staats, A.; Li, D.; Sullivan, A.C.; Stoodley, P. Biofilm formation in periprosthetic joint infections. Ann. Jt. 2021, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Akgün, D.; Perka, C.; Trampuz, A.; Renz, N. Outcome of hip and knee periprosthetic joint infections caused by pathogens resistant to biofilm-active antibiotics: Results from a prospective cohort study. Arch. Orthop. Trauma Surg. 2018, 138, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Yehia, S.R.; Duncan, H. Synovial fluid analysis. Clin. Orthop. Relat. Res. 1975, 107, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Romero-Palacios, A.; Petruccelli, D.; Main, C.; Winemaker, M.; de Beer, J.; Mertz, D. Screening for and decolonization of Staphylococcus aureus carriers before total joint replacement is associated with lower S. aureus prosthetic joint infection rates. Am. J. Infect. Control 2020, 48, 534–537. [Google Scholar] [CrossRef]
- Pant, N.; Miranda-Hernandez, S.; Rush, C.; Warner, J.; Eisen, D.P. Non-Antimicrobial Adjuvant Therapy Using Ticagrelor Reduced Biofilm-Related Staphylococcus aureus Prosthetic Joint Infection. Front. Pharmacol. 2022, 13, 927783. [Google Scholar] [CrossRef]
- Heim, C.E.; Bosch, M.E.; Yamada, K.J.; Aldrich, A.L.; Chaudhari, S.S.; Klinkebiel, D.; Gries, C.M.; Alqarzaee, A.A.; Li, Y.; Thomas, V.C.; et al. Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Nat. Microbiol. 2020, 5, 1271–1284. [Google Scholar] [CrossRef]
- Nobile, C.J.; Johnson, A.D. Candida albicans Biofilms and Human Disease. Annu. Rev. Microbiol. 2015, 69, 71–92. [Google Scholar] [CrossRef] [Green Version]
- Stewart, P.S.; Bjarnsholt, T. Risk factors for chronic biofilm-related infection associated with implanted medical devices. Clin. Microbiol. Infect. 2020, 26, 1034–1038. [Google Scholar] [CrossRef]
- Trobos, M.; Firdaus, R.; Svensson Malchau, K.; Tillander, J.; Arnellos, D.; Rolfson, O.; Thomsen, P.; Lasa, I. Genomics of Staphylococcus aureus and Staphylococcus epidermidis from Periprosthetic Joint Infections and Correlation to Clinical Outcome. Microbiol. Spectr. 2022, e0218121, online ahead of print. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Shaker, A.; Saffarini, M.; Chen, A.F.; Hirschmann, M.T.; Kohl, S. Accuracy of diagnostic tests for prosthetic joint infection: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 3064–3074. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Tan, T.L.; Goswami, K.; Higuera, C.; Della Valle, C.; Chen, A.F.; Shohat, N. The 2018 Definition of Periprosthetic Hip and Knee Infection: An Evidence-Based and Validated Criteria. J. Arthroplast. 2018, 33, 1309–1314.e2. [Google Scholar] [CrossRef] [PubMed]
- Font-Vizcarra, L.; García, S.; Martínez-Pastor, J.C.; Sierra, J.M.; Soriano, A. Blood culture flasks for culturing synovial fluid in prosthetic joint infections. Clin. Orthop. Relat. Res. 2010, 468, 2238–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudareva, M.; Barrett, L.; Figtree, M.; Scarborough, M.; Watanabe, M.; Newnham, R.; Wallis, R.; Oakley, S.; Kendrick, B.; Stubbs, D.; et al. Sonication versus Tissue Sampling for Diagnosis of Prosthetic Joint and Other Orthopedic Device-Related Infections. J. Clin. Microbiol. 2018, 56, e00688-18. [Google Scholar] [CrossRef] [Green Version]
- Sambri, A.; Cadossi, M.; Giannini, S.; Pignatti, G.; Marcacci, M.; Neri, M.P.; Maso, A.; Storni, E.; Gamberini, S.; Naldi, S.; et al. Is Treatment with Dithiothreitol More Effective than Sonication for the Diagnosis of Prosthetic Joint Infection? Clin. Orthop. Relat. Res. 2018, 476, 137–145. [Google Scholar] [CrossRef]
- Kim, S.G.; Kim, J.G.; Jang, K.M.; Han, S.B.; Lim, H.C.; Bae, J.H. Diagnostic Value of Synovial White Blood Cell Count and Serum C-Reactive Protein for Acute Periprosthetic Joint Infection After Knee Arthroplasty. J. Arthroplast. 2017, 32, 3724–3728. [Google Scholar] [CrossRef]
- Birlutiu, R.M.; Birlutiu, V.; Cismasiu, R.S.; Mihalache, M. bbFISH-ing in the sonication fluid. Medicine 2019, 98, e16501. [Google Scholar] [CrossRef]
- Del Pozo, J.L.; Patel, R. Clinical practice. Infection associated with prosthetic joints. N. Engl. J. Med. 2009, 361, 787–794. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Kobayashi, N.; Tomoyama, A.; Choe, H.; Yamazaki, E.; Inaba, Y. Clinical characteristics and risk factors for culture-negative periprosthetic joint infections. J. Orthop. Surg. Res. 2021, 16, 292. [Google Scholar] [CrossRef]
- Li, C.; Renz, N.; Trampuz, A.; Ojeda-Thies, C. Twenty common errors in the diagnosis and treatment of periprosthetic joint infection. Int. Orthop. 2019, 44, 3–14, correction in Int Orthop. 2019. [Google Scholar] [CrossRef] [Green Version]
- Karczewski, D.; Winkler, T.; Renz, N.; Trampuz, A.; Lieb, E.; Perka, C.; Müller, M. A standardized interdisciplinary algorithm for the treatment of prosthetic joint infections. Bone Jt. J. 2019, 101, 132–139, correction in Bone Jt. J. 2019, 101, 1032. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Zhai, Z.; Li, H.; Li, H.; Liu, X.; Zhu, Z.; Wang, Y.; Liu, G.; Dai, K. PCR-based diagnosis of prosthetic joint infection. J. Clin. Microbiol. 2013, 51, 2742–2746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgenstern, C.; Cabric, S.; Perka, C.; Trampuz, A.; Renz, N. Synovial fluid multiplex PCR is superior to culture for detection of low-virulent pathogens causing periprosthetic joint infection. Diagn. Microbiol. Infect. Dis. 2018, 90, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Higgins, E.; Suh, G.A.; Tande, A.J. Enhancing Diagnostics in Orthopedic Infections. J. Clin. Microbiol. 2022, e0219621, online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Esteban, J.; Gómez-Barrena, E. An update about molecular biology techniques to detect orthopaedic implant-related infections. EFORT Open Rev. 2021, 6, 93–100. [Google Scholar] [CrossRef]
- Gomez, E.; Cazanave, C.; Cunningham, S.A.; Greenwood-Quaintance, K.E.; Steckelberg, J.M.; Uhl, J.R.; Hanssen, A.D.; Karau, M.J.; Schmidt, S.M.; Osmon, D.R.; et al. Prosthetic joint infection diagnosis using broad-range PCR of biofilms dislodged from knee and hip arthroplasty surfaces using sonication. J. Clin. Microbiol. 2012, 50, 3501–3508. [Google Scholar] [CrossRef] [Green Version]
- Bémer, P.; Plouzeau, C.; Tande, D.; Léger, J.; Giraudeau, B.; Valentin, A.S.; Jolivet-Gougeon, A.; Vincent, P.; Corvec, S.; Gibaud, S.; et al. Evaluation of 16S rRNA gene PCR sensitivity and specificity for diagnosis of prosthetic joint infection: A prospective multicenter cross-sectional study. J. Clin. Microbiol. 2014, 52, 3583–3589. [Google Scholar] [CrossRef] [Green Version]
- Vandercam, B.; Jeumont, S.; Cornu, O.; Yombi, J.-C.; Lecouvet, F.; Lefèvre, P.; Irenge, L.M.; Gala, J.-L. Amplification-based DNA analysis in the diagnosis of prosthetic joint infection. J. Mol. Diagn. 2008, 10, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Goh, G.S.; Parvizi, J. Diagnosis and Treatment of Culture-Negative Periprosthetic Joint Infection. J. Arthroplast. 2022. online ahead of print. [Google Scholar] [CrossRef]
- Šuster, K.; Podgornik, A.; Cör, A. An alternative molecular approach for rapid and specific detection of clinically relevant bacteria causing prosthetic joint infections with bacteriophage K. New Microbiol. 2020, 43, 107–114. [Google Scholar]
- Bourbour, S.; Emaneini, M.; Jabalameli, M.; Mortazavi, S.M.J.; Tahmasebi, M.N.; Taghizadeh, A.; Sharafatvaziri, A.; Beigverdi, R.; Jabalameli, F. Efficacy of 16S rRNA variable regions high-resolution melt analysis for bacterial pathogens identification in periprosthetic joint infections. BMC Microbiol. 2021, 21, 112. [Google Scholar] [CrossRef] [PubMed]
- Torchia, M.T.; Austin, D.C.; Kunkel, S.T.; Dwyer, K.W.; Moschetti, W.E. Next-Generation Sequencing vs Culture-Based Methods for Diagnosing Periprosthetic Joint Infection After Total Knee Arthroplasty: A Cost-Effectiveness Analysis. J. Arthroplast. 2019, 34, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Huang, Z.; Li, W.; Fang, X.; Zhang, W. Can metagenomic next-generation sequencing identify the pathogens responsible for culture-negative prosthetic joint infection? BMC Infect. Dis. 2020, 20, 253. [Google Scholar] [CrossRef] [PubMed]
- Street, T.L.; Sanderson, N.; Atkins, B.L.; Brent, A.J.; Cole, K.; Foster, D.; McNally, M.A.; Oakley, S.; Peto, L.; Taylor, A.; et al. Molecular Diagnosis of Orthopedic-Device-Related Infection Directly from Sonication Fluid by Metagenomic Sequencing. J. Clin. Microbiol. 2017, 55, 2334–2347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Li, W.; Lee, G.-C.; Fang, X.; Xing, L.; Yang, B.; Lin, J.; Zhang, W. Metagenomic next-generation sequencing of synovial fluid demonstrates high accuracy in prosthetic joint infection diagnostics: mNGS for diagnosing PJI. Bone Jt. Res. 2020, 9, 440–449. [Google Scholar] [CrossRef]
- Wang, C.X.; Huang, Z.; Fang, X.; Li, W.; Yang, B.; Zhang, W. Comparison of broad-range polymerase chain reaction and metagenomic next-generation sequencing for the diagnosis of prosthetic joint infection. Int. J. Infect. Dis. 2020, 95, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Morales-Laverde, L.; Echeverz, M.; Trobos, M.; Solano, C.; Lasa, I. Experimental Polymorphism Survey in Intergenic Regions of the icaADBCR Locus in Staphylococcus aureus Isolates from Periprosthetic Joint Infections. Microorganisms 2022, 10, 600. [Google Scholar] [CrossRef]
- Wildeman, P.; Tevell, S.; Eriksson, C.; Lagos, A.C.; Söderquist, B.; Stenmark, B. Genomic characterization and outcome of prosthetic joint infections caused by Staphylococcus aureus. Sci. Rep. 2020, 10, 5938. [Google Scholar] [CrossRef] [Green Version]
- Sanabria, A.M.; Janice, J.; Hjerde, E.; Simonsen, G.S.; Hanssen, A.M. Shotgun-metagenomics based prediction of antibiotic resistance and virulence determinants in Staphylococcus aureus from periprosthetic tissue on blood culture bottles. Sci. Rep. 2021, 11, 20848. [Google Scholar] [CrossRef]
- Goswami, K.; Shope, A.J.; Tokarev, V.; Wright, J.R.; Unverdorben, L.V.; Ly, T.; See, J.C.; McLimans, C.J.; Wong, H.T.; Lock, L.; et al. Comparative meta-omics for identifying pathogens associated with prosthetic joint infection. Sci. Rep. 2021, 11, 23749. [Google Scholar] [CrossRef]
- Gazendam, A.; Wood, T.J.; Tushinski, D.; Bali, K. Diagnosing Periprosthetic Joint Infection: A Scoping Review. Curr. Rev. Musculoskelet. Med. 2022, 15, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.-K.; Cho, S.-H.; Lee, D.; Kang, B.-H.; Lee, S.-H.; Moon, D.-G.; Kim, D.-H.; Nam, D.-C.; Hwang, A.S.-C. A Review of the Literature on Culture-Negative Periprosthetic Joint Infection: Epidemiology, Diagnosis and Treatment. Knee Surg. Relat. Res. 2017, 29, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, E.; Roschka, C.; Esteban, J.; Raglio, A.; Tisler, A.; Willems, P.; Kramer, T.S. The State of Microbiology Diagnostic of Prosthetic Joint Infection in Europe: An In-Depth Survey Among Clinical Microbiologists. Front. Microbiol. 2022, 13, 906989. [Google Scholar] [CrossRef] [PubMed]
- Kildow, B.J.; Ryan, S.P.; Danilkowicz, R.; Lazarides, A.L.; Penrose, C.; Bolognesi, M.P.; Jiranek, W.; Seyler, T.M. Next-generation sequencing not superior to culture in periprosthetic joint infection diagnosis. Bone Jt. J. 2021, 103, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Lüftinger, L.; Ferreira, I.; Frank, B.J.H.; Beisken, S.; Weinberger, J.; von Haeseler, A.; Rattei, T.; Hofstaetter, J.G.; Posch, A.E.; Materna, A. Predictive Antibiotic Susceptibility Testing by Next-Generation Sequencing for Periprosthetic Joint Infections: Potential and Limitations. Biomedicines 2021, 9, 910. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatti, G.; Taddei, F.; Brandolini, M.; Mancini, A.; Denicolò, A.; Congestrì, F.; Manera, M.; Arfilli, V.; Battisti, A.; Zannoli, S.; et al. Molecular Approach for the Laboratory Diagnosis of Periprosthetic Joint Infections. Microorganisms 2022, 10, 1573. https://doi.org/10.3390/microorganisms10081573
Gatti G, Taddei F, Brandolini M, Mancini A, Denicolò A, Congestrì F, Manera M, Arfilli V, Battisti A, Zannoli S, et al. Molecular Approach for the Laboratory Diagnosis of Periprosthetic Joint Infections. Microorganisms. 2022; 10(8):1573. https://doi.org/10.3390/microorganisms10081573
Chicago/Turabian StyleGatti, Giulia, Francesca Taddei, Martina Brandolini, Andrea Mancini, Agnese Denicolò, Francesco Congestrì, Martina Manera, Valentina Arfilli, Arianna Battisti, Silvia Zannoli, and et al. 2022. "Molecular Approach for the Laboratory Diagnosis of Periprosthetic Joint Infections" Microorganisms 10, no. 8: 1573. https://doi.org/10.3390/microorganisms10081573
APA StyleGatti, G., Taddei, F., Brandolini, M., Mancini, A., Denicolò, A., Congestrì, F., Manera, M., Arfilli, V., Battisti, A., Zannoli, S., Marino, M. M., Marzucco, A., Morotti, M., Grumiro, L., Scalcione, A., Dirani, G., Cricca, M., & Sambri, V. (2022). Molecular Approach for the Laboratory Diagnosis of Periprosthetic Joint Infections. Microorganisms, 10(8), 1573. https://doi.org/10.3390/microorganisms10081573