Research on the Vibration Reduction Mechanism of a New Tensioning Platform with an Embedded Superstructure
Abstract
:1. Introduction
2. Design and Optimization of the Main Scheme of the Actuation Platform
2.1. Principal Scheme
2.2. Optimization of Main Structure Parameters
3. Vibration Suppression Mechanism of the Embedded Superstructure
3.1. Equivalent Dynamic Modeling
3.2. Vibration Suppression Mechanism
4. Numerical Research and Result Analysis
4.1. Static Performance
4.2. Dynamic Tensioning Performance
4.3. Harmonic Response Tests of the Overall Platform
4.4. Vibration Suppression Tests under Fixed Frequencies Disturbance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, Z.; Zhu, X. Vibration modal characteristics analysis of compliant mechanism with opening. Aerosp. Control. Appl. 2022, 48, 1–11. [Google Scholar]
- Feng, X.; Tang, L.; Guan, X.; Hao, R.; Zhang, K. Active damping and relative position control for large antenna. Aerosp. Control. Appl. 2022, 48, 17–26. [Google Scholar]
- Song, Y.; Zhang, C.; Li, Z.; Li, Y.; Lian, J.; Shi, Q.; Yan, B. Study on dynamic characteristics of bio-inspired vibration isolation platform. J. Vib. Control. 2022, 28, 1470–1485. [Google Scholar] [CrossRef]
- Zhai, M.; Zhang, B.; Li, X.; Long, Z. Design and Implementation of Permanent and Electromagnet Composite Vibration Isolation System Based on Negative Stiffness Theory. Actuators 2023, 12, 44. [Google Scholar] [CrossRef]
- Xu, C.; Xu, Z.-D.; Huang, X.-H.; Xu, Y.-S.; Ge, T. Modeling and analysis of a viscoelastic micro-vibration isolation and mitigation platform for spacecraft. J. Vib. Control. 2018, 24, 4337–4352. [Google Scholar] [CrossRef]
- Song, H.; Shan, X.; Hou, W.; Wang, C.; Sun, K.; Xie, T. A novel piezoelectric-based active-passive vibration isolator for low-frequency vibration sys-tem and experimental analysis of vibration isolation performance. Energy 2023, 278, 127870. [Google Scholar] [CrossRef]
- Niu, M.; Chen, L. Analysis of a bio-inspired vibration isolator with a compliant limb-like structure. Mech. Syst. Signal Process. 2022, 179, 109348. [Google Scholar] [CrossRef]
- Wang, X.; Wang, D.; Li, F.; Zhang, Y.; Xu, Z.; Wang, T.; Fu, G.; Lu, C. Self-learning vibration absorber with negative electromagnetic stiffness for variable vibration. Int. J. Mech. Sci. 2023, 248, 108225. [Google Scholar] [CrossRef]
- Clark, L.; Shirinzadeh, B.; Zhong, Y.; Tian, Y.; Zhang, D. Design and analysis of a compact flexure-based precision pure rotation stage without actuator redundancy. Mech. Mach. Theory 2016, 105, 129–144. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Z.; Yang, Y. Design and Experimental Investigation of a Novel Compliant Positioning Stage with Low-frequency Vibration Isolation Capability. Sens. Actuators A Phys. 2019, 295, 439–449. [Google Scholar] [CrossRef]
- Yang, X.; Wu, H.; Li, Y.; Chen, B. Dynamic Isotropic Design and Decentralized Active Control of a Six-axis Vibration Isolator via Stewart Platform. Mech. Mach. Theory 2017, 117, 244–252. [Google Scholar] [CrossRef]
- Herpe, X.; Walker, R.; Dunnigan, M.; Kong, X. On a simplified nonlinear analytical model for the characterisation and design opti-misation of a compliant XY micro-motion stage. Robot. Comput.-Integr. Manuf. 2018, 49, 66–76. [Google Scholar] [CrossRef]
- Sun, X.; Hu, W.; Bai, Z.; Yang, Y. Experimental investigation on a new sensitive payload platform with simultaneous positioning and vibration suppression capabilities. J. Vib. Control. 2022, 28, 1200–1213. [Google Scholar] [CrossRef]
- Ciani, G.; Arain, M.A.; Aston, S.M.; Feldbaum, D.; Fulda, P.; Gleason, J.; Heintze, M.; Martin, R.M.; Mueller, C.L.; Kumar, D.M.N. Small optic suspensions for advanced LIGO input optics and other precision optical ex-periments. Rev. Sci. Instrum. 2016, 87, 114504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, S.; Zhang, Q.; Sun, X.; Yang, B.; Meng, G. Simultaneous micropositioning and microvibration control of a magnetostrictive Stewart plat-form with synthesized strategy. Mech. Syst. Signal Process. 2023, 187, 109925. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L. Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Prog. Mater. Sci. 2018, 94, 114–173. [Google Scholar] [CrossRef]
- Zhuoqun, W.; Pengfei, W.; Yan, Z.; Jiang, Y. Vibration reduction technology of mechanical metamaterials presented to large scale structures. Acta Aeronaut. Et Astronaut. Sin. 2018, 39, 721651. [Google Scholar]
- Jin, Y.; Shi, Y.; Yu, G.-C.; Wei, G.-T.; Hu, B.; Wu, L.-Z. A multifunctional honeycomb metastructure for vibration suppression. Int. J. Mech. Sci. 2020, 188, 105964. [Google Scholar] [CrossRef]
- Fan, H.; Yang, L.; Tian, Y.; Wang, Z. Design of metastructures with quasi-zero dynamic stiffness for vibration isolation. Compos. Struct. 2020, 243, 112244. [Google Scholar] [CrossRef]
- Gao, H.; He, W.; Zhang, Y.; Sun, C. Adaptive finite-time fault-tolerant control for uncertain flexible flapping wings based on rigid finite element method. IEEE Trans. Cybern. 2021, 52, 9036–9047. [Google Scholar] [CrossRef]
- Wu, H.; Lai, L.; Zhang, L.; Zhu, L. A novel compliant XY micro-positioning stage using bridge-type displacement amplifier embed-ded with Scott-Russell mechanism. Precis. Eng. 2022, 73, 284–295. [Google Scholar] [CrossRef]
- Lu, C.; Feng, Y.W.; Liem, R.P.; Fei, C.W. Improved Kriging with extremum response surface method for structural dynamic reliability and sensitivity analyses. Aerosp. Sci. Technol. 2018, 76, 164–175. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, S.; Zhang, Y.; Song, J.; Xue, B. Optimization of Process Parameters for Laser Cutting of AZ31B Magnesium Alloy Based on Orthogonal Experiment and BP Neural Network. Trans. Indian Inst. Met. 2023. [Google Scholar] [CrossRef]
- Le Luong, H.T.; Messine, F.; Henaux, C.; Mariani, G.B.; Voyer, N.; Mollov, S. Comparison between fmincon and NOMAD optimization codes to design wound rotor synchronous machines. Int. J. Appl. Electromagn. Mech. 2019, 60, S87–S100. [Google Scholar] [CrossRef]
- Li, Z. Research on design and experiment of a XY-Decoupled compliant mechanism with high modal damping using embedded local resonance metastructure. S. China Univ. Technol. 2020. [Google Scholar] [CrossRef]
- Zu, R.; Fan, Q.; Chen, Y.; Chen, W.; Li, H.; Liu, H. Research progress and application of 3D Printing TPU materials. Mod. Chem. Res. 2023, 130, 20–24. [Google Scholar] [CrossRef]
- Khushnood, M.A.; Wang, X.; Cui, N. Active vibration control of a slewing spacecraft’s panel using H∞ control. J. Vi-Broengineering 2016, 18, 2959–2973. [Google Scholar] [CrossRef] [Green Version]
- Harada, K.; Kinoshita, T.; Shiratori, N. The emergence of controllable transient behavior using an agent diversification strategy. IEEE Trans. Syst. Man, Cybern.-Part A Syst. Hum. 2003, 33, 589–596. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, B.; Yan, H. Weak Signal Detection Based on Pseudo Wigner Ville Distribution. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1176, p. 062040. [Google Scholar]
Serial Number | x1/mm | x2/mm | x3/mm | Yt/mm | Yp/Hz |
---|---|---|---|---|---|
1 | 75.78 | 0.700931 | 4.080975 | 0.033334 | 294.9327 |
2 | 70 | 0.75 | 4 | 0.029667 | 301.51 |
3 | 76.14604 | 0.776976 | 4.333236 | 0.031466 | 371.4842 |
4 | 71.55851 | 0.796421 | 4.175428 | 0.029454 | 303.9678 |
5 | 66.78863 | 0.711865 | 4.358513 | 0.029252 | 299.9477 |
6 | 72.04422 | 0.76038 | 4.321502 | 0.030315 | 361.7926 |
7 | 75.42766 | 0.712418 | 4.225901 | 0.032516 | 297.1097 |
8 | 73.88042 | 0.728615 | 4.121734 | 0.03181 | 298.5136 |
9 | 66.0245 | 0.789504 | 4.294115 | 0.027685 | 374.7236 |
10 | 76.78263 | 0.811695 | 4.146414 | 0.030889 | 302.6956 |
11 | 69.05379 | 0.791876 | 4.203257 | 0.02856 | 303.5848 |
12 | 70.41992 | 0.777609 | 4.398086 | 0.029325 | 363.1416 |
13 | 66.96664 | 0.700444 | 4.055081 | 0.029682 | 299.0751 |
14 | 65.94436 | 0.791094 | 4.278291 | 0.027621 | 374.4772 |
15 | 73.36935 | 0.716163 | 4.399461 | 0.031607 | 298.5916 |
16 | 70.58632 | 0.756065 | 4.155923 | 0.030033 | 380.6868 |
Frequency/Hz | Vibration Amplitude without Superstructure/μm | Vibration Amplitude with Superstructure/μm | Attenuation/dB |
---|---|---|---|
34.6 | 331 | 272 | −1.705 |
44.4 | 173 | 145 | −1.533 |
57.1 | 40 | 35 | −1.15 |
65.7 | 20 | 17 | −1.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Yang, Z.; Wang, J.; Hou, X.; Yang, Y. Research on the Vibration Reduction Mechanism of a New Tensioning Platform with an Embedded Superstructure. Actuators 2023, 12, 279. https://doi.org/10.3390/act12070279
Sun X, Yang Z, Wang J, Hou X, Yang Y. Research on the Vibration Reduction Mechanism of a New Tensioning Platform with an Embedded Superstructure. Actuators. 2023; 12(7):279. https://doi.org/10.3390/act12070279
Chicago/Turabian StyleSun, Xiaoqing, Zhengyin Yang, Ju Wang, Xiusong Hou, and Yikun Yang. 2023. "Research on the Vibration Reduction Mechanism of a New Tensioning Platform with an Embedded Superstructure" Actuators 12, no. 7: 279. https://doi.org/10.3390/act12070279
APA StyleSun, X., Yang, Z., Wang, J., Hou, X., & Yang, Y. (2023). Research on the Vibration Reduction Mechanism of a New Tensioning Platform with an Embedded Superstructure. Actuators, 12(7), 279. https://doi.org/10.3390/act12070279