Co-Circulation of Two Independent Clades and Persistence of CHIKV-ECSA Genotype during Epidemic Waves in Rio de Janeiro, Southeast Brazil
Abstract
:1. Introduction
2. Results
2.1. Phylogenetic Analyses
2.2. Molecular Characterization of Newly CHIKV Sequences from Rio de Janeiro State
3. Discussion
4. Materials and Methods
4.1. Ethical Statement
4.2. Sample Collection and RT-qPCR Diagnosis
4.3. Synthesis of cDNA and Multiplex Tiling PCR
4.4. Library Preparation and Nanopore Sequencing
4.5. Phylogenetic and Bayesian Analysis
4.6. Epidemiological Data Assembly
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weaver, S.C.; Lecuit, M. Chikungunya virus and the global spread of a mosquitoborne disease. N. Engl. J. Med. 2015, 372, 1231–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, M.S.; Costa, P.A.G.; Correa, I.A.; De Souza, M.R.M.; Calil, P.T.; Da Silva, G.P.D.; Costa, S.M.; Fonseca, V.W.P.; Da Costa, L.J. Chikungunya Virus: An Emergent Arbovirus to the South American Continent and a Continuous Threat to the World. Front Microbiol Internet. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2020.01297/pdf (accessed on 26 July 2020).
- Rougeron, V.; Sam, I.C.; Caron, M.; Nkoghe, D.; Leroy, E.; Roques, P. Chikungunya, a paradigm of neglected tropical disease that emerged to be a new health global risk. J. Clin. Virol. 2015, 64, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, M.; Garasia, S.; Berthiaume, P.; Corrin, T.; Greig, J.; Ng, V.; Young, I.; Waddell, L. A scoping review of published literature on chikungunya virus. PLoS ONE 2018, 13, e0207554. [Google Scholar] [CrossRef] [PubMed]
- Powers, A.M. Genomic evolution and phenotypic distinctions of Chikungunya viruses causing the Indian Ocean outbreak. Exp. Biol. Med. Maywood. 2011, 236, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Tsetsarkin, K.A.; Chen, R.; Sherman, M.B.; Weaver, S.C. Chikungunya virus: Evolution and genetic determinants of emergence. Curr. Opin. Virol. 2011, 1, 310–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leparc-Goffart, I.; Nougairede, A.; Cassadou, S.; Prat, C.; de Lamballerie, X. Chikungunya in the Americas. Lancet 2014, 383, 514. [Google Scholar] [CrossRef]
- Nunes, M.R.; Faria, N.R.; de Vasconcelos, J.M.; Golding, N.; Kraemer, M.U.; de Oliveira, L.F.; Azevedo, R.o.S.; da Silva, D.E.; da Silva, E.V.; da Silva, S.P.; et al. Emergence and potential for spread of Chikungunya virus in Brazil. BMC Med. 2015, 13, 102. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, M.G.; Andrade, A.M.; Costa, M.A.C.; Castro, J.N.; Oliveira, F.L.; Goes, C.S.; Maia, M.; Santana, E.B.; Nunes, B.T.; Vasconcelos, P.F. East/Central/South African genotype chikungunya virus, Brazil, 2014. Emerg. Infect. Dis. 2015, 21, 906–907. [Google Scholar] [CrossRef] [Green Version]
- Souza, T.; Azeredo, E.; Badolato-Corrêa, J.; Damasco, P.; Santos, C.; Petitinga-Paiva, F.; Nunes, P.; Barbosa, L.; Cipitelli, M.; Chouin-Carneiro, T.; et al. First Report of the East-Central South African Genotype of Chikungunya Virus in Rio de Janeiro, Brazil. PLoS Curr. Outbreaks 2017. [Google Scholar] [CrossRef]
- Cunha, M.S.; Cruz, N.V.G.; Schnellrath, L.C.; Medaglia, M.L.G.; Casotto, M.E.; Albano, R.M.; Costa, L.J.; Damaso, C.R. Autochthonous Transmission of East/Central/South African Genotype Chikungunya Virus, Brazil. Emerg. Infect. Dis. 2017, 23, 1737–1739. [Google Scholar] [CrossRef] [Green Version]
- de Souza, T.M.A.; Ribeiro, E.D.; Corrêa, V.C.E.; Damasco, P.V.; Santos, C.C.; de Bruycker-Nogueira, F.; Chouin-Carneiro, T.; Faria, N.R.D.C.; Nunes, P.C.G.; Heringer, M.; et al. Following in the Footsteps of the Chikungunya Virus in Brazil: The First Autochthonous Cases in Amapá in 2014 and Its Emergence in Rio de Janeiro during 2016. Viruses 2018, 10, 623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xavier, J.; Giovanetti, M.; Fonseca, V.; Thézé, J.; Gräf, T.; Fabri, A.; Goes de Jesus, J.; Lima de Mendonça, M.C.; Damasceno Dos Santos Rodrigues, C.; Mares-Guia, M.A.; et al. Circulation of chikungunya virus East/Central/South African lineage in Rio de Janeiro, Brazil. PLoS ONE 2019, 14, e0217871. [Google Scholar] [CrossRef] [PubMed]
- Souza, T.M.L.; Vieira, Y.R.; Delatorre, E.; Barbosa-Lima, G.; Luiz, R.L.F.; Vizzoni, A.; Jain, K.; Miranda, M.M.; Bhuva, N.; Gogarten, J.F.; et al. Emergence of the East-Central-South-African genotype of Chikungunya virus in Brazil and the city of Rio de Janeiro may have occurred years before surveillance detection. Sci. Rep. 2019, 9, 2760. [Google Scholar] [CrossRef]
- Julia da Silva Pessoa Vieira, C.; José Ferreira da Silva, D.; Rigotti Kubiszeski, J.; Ceschini Machado, L.; Pena, L.J.; Vieira de Morais Bronzoni, R.; da Luz Wallau, G. The Emergence of Chikungunya ECSA Lineage in a Mayaro Endemic Region on the Southern Border of the Amazon Forest. Trop. Med. Infect. Dis. 2020, 5, 105. [Google Scholar] [CrossRef]
- Maia, Z.P.G.; Pereira, F.M.; Said, R.F.D.C.; Fonseca, V.; Gräf, T.; Nogueira, F.D.B.; Nardy, V.B.; Xavier, J.; Maia, M.L.; Abreu, A.L.; et al. Return of the founder Chikungunya virus to its place of introduction into Brazil is revealed by genomic characterization of exanthematic disease cases. Emerg. Microbes Infect. 2019, 9, 53–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, F.D.; Rezende, I.M.; Barros, E.L.T.; Sacchetto, L.; Garcês, T.C.C.S.; Silva, N.I.O.; Alves, P.A.; Soares, J.O.; Kroon, E.G.; Pereira, A.C.T.D.; et al. Circulation of Chikungunya virus East-Central-South Africa genotype during an outbreak in 2016-17 in Piaui State, Northeast Brazil. Rev. Inst. Med. Trop. Sao Paulo 2019, 61, e57. [Google Scholar] [CrossRef] [PubMed]
- SVS. Boletim Epidemiológico: Monitoramento Dos Casos De Arboviroses Urbanas Transmitidas Pelo Aedes (Dengue, Chikungunya E Zika), Semanas Epidemiológicas 01 A 52; Secretaria de Vigilância em Saúde Ministério da Saúde: Brasilia, Brasil, 2020; Volume 51. [Google Scholar]
- IBGE. Cidades E Estados—Rio De Janeiro. Available online: https://www.ibge.gov.br/cidades-e-estados/rj.html (accessed on 30 July 2020).
- CEPERJ. Cartografia Fluminense. Available online: http://www.ceperj.rj.gov.br/Conteudo.asp?ident=79 (accessed on 30 July 2020).
- SVS. Monitoramento Dos Casos De Arboviroses Urbanas Transmitidas Pelo Aedes Aegypti (Dengue, Chikungunya E Zika), Semanas Epidemiológicas 1 A 29, 2020; Secretaria de Vigilância em Saúde—Ministério da Saúde: Brasilia, Brasil, 2020; Volume 51. [Google Scholar]
- SVS. Monitoramento Dos Casos De Dengue, Febre De Chikungunya E Doença Aguda Pelo Vírus Zika Até A Semana Epidemiológica 52 De 2018; Secretaria de Vigilância em Saúde—Ministério da Saúde: Brasilia, Brasil, 2019; Volume 50. [Google Scholar]
- SVS. Monitoramento Dos Casos De Dengue, Febre De Chikungunya E Febre Pelo Vírus Zika Até A Semana Epidemiológica 52, 2017; Secretaria de Vigilância em Saúde Ministério da Saúde: Brasilia, Brasil, 2018; Volume 49. [Google Scholar]
- SVS. Monitoramento Dos Casos De Dengue, Febre De Chikungunya E Febre Pelo Vírus Zika Até A Semana Epidemiológica 52, 2015; Secretaria de Vigilância em Saúde—Ministério da Saúde: Brasilia, Brasil, 2016; Volume 47. [Google Scholar]
- Kuo, S.C.; Chen, Y.J.; Wang, Y.M.; Tsui, P.Y.; Kuo, M.D.; Wu, T.Y.; Lo, S.J. Cell-based analysis of Chikungunya virus E1 protein in membrane fusion. J. Biomed. Sci. 2012, 19, 44. [Google Scholar] [CrossRef] [Green Version]
- Solignat, M.; Gay, B.; Higgs, S.; Briant, L.; Devaux, C. Replication cycle of chikungunya: A re-emerging arbovirus. Virology 2009, 393, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Tsetsarkin, K.A.; Vanlandingham, D.L.; McGee, C.E.; Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007, 3, e201. [Google Scholar] [CrossRef]
- Agarwal, A.; Sharma, A.K.; Sukumaran, D.; Parida, M.; Dash, P.K. Two novel epistatic mutations (E1:K211E and E2:V264A) in structural proteins of Chikungunya virus enhance fitness in Aedes aegypti. Virology 2016, 497, 59–68. [Google Scholar] [CrossRef]
- Sahadeo, N.S.D.; Allicock, O.M.; De Salazar, P.M.; Auguste, A.J.; Widen, S.; Olowokure, B.; Gutierrez, C.; Valadere, A.M.; Polson-Edwards, K.; Weaver, S.C.; et al. Understanding the evolution and spread of chikungunya virus in the Americas using complete genome sequences. Virus Evol. 2017, 3, vex010. [Google Scholar] [CrossRef] [Green Version]
- Faria, N.R.; Kraemer, M.U.G.; Hill, S.C.; De Jesus, J.G.; Aguiar, R.S.; Iani, F.C.M.; Xavier, J.; Quick, J.; Du Plessis, L.; Dellicour, S.; et al. Genomic and epidemiological monitoring of yellow fever virus transmission potential. Science 2018, 361, 894–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faria, N.R.; Quick, J.; Claro, I.; Thézé, J.; De Jesus, J.G.; Giovanetti, M.; Kraemer, M.U.G.; Hill, S.C.; Black, A.; Da Costa, A.C.; et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nat. Cell Biol. 2017, 546, 406–410. [Google Scholar] [CrossRef]
- Quick, J.; Grubaugh, N.D.; Pullan, S.T.; Claro, I.M.; Smith, A.D.; Gangavarapu, K.; Oliveira, G.; Robles-Sikisaka, R.; Rogers, T.F.; Beutler, N.A.; et al. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat. Protoc. 2017, 12, 1261–1276. [Google Scholar] [CrossRef] [Green Version]
- Vilsker, M.; Moosa, Y.; Nooij, S.; Fonseca, V.; Ghysens, Y.; Dumon, K.; Pauwels, R.; Alcantara, L.C.; Vanden Eynden, E.; Vandamme, A.M.; et al. Genome Detective: An automated system for virus identification from high-throughput sequencing data. Bioinformatics 2019, 35, 871–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Lam, T.T.; Max Carvalho, L.; Pybus, O.G. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016, 2, vew007. [Google Scholar] [CrossRef] [Green Version]
- Suchard, M.A.; Lemey, P.; Baele, G.; Ayres, D.L.; Drummond, A.J.; Rambaut, A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018, 4, vey016. [Google Scholar] [CrossRef] [Green Version]
- Baele, G.; Li, W.L.; Drummond, A.J.; Suchard, M.A.; Lemey, P. Accurate model selection of relaxed molecular clocks in bayesian phylogenetics. Mol. Biol. Evol. 2013, 30, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Ho, S.Y.; Phillips, M.J.; Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006, 4, e88. [Google Scholar] [CrossRef] [PubMed]
- Gill, M.S.; Lemey, P.; Faria, N.R.; Rambaut, A.; Shapiro, B.; Suchard, M.A. Improving Bayesian population dynamics inference: A coalescent-based model for multiple loci. Mol. Biol. Evol. 2013, 30, 713–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
ID | Sample | Collection Date | Days of Symptoms | Sex | Age | District | City | Ct | Coverage (%) | Reads | Accession Number |
---|---|---|---|---|---|---|---|---|---|---|---|
CHIKV-1 | Serum | 2019-01-21 | 4 | F | 28 | Vila Maria Helena | Duque de Caxias | 20.89 | 92.5 | 86,362 | MT933029 |
CHIKV-2 | Serum | 2019-01-28 | 5 | F | 26 | Piabetá | Duque de Caxias | 20.74 | 92.7 | 62,250 | MT933030 |
CHIKV-3 | Serum | 2019-02-18 | 2 | M | 66 | Parque Senhor do Bonfim | Duque de Caxias | 19.15 | 77.3 | 105,226 | MT933031 |
CHIKV-4 | Serum | 2019-02-05 | 0 | NB-M | 1 m | Madureira | Rio de Janeiro | 17,71 | 92.8 | 25,250 | MT933032 |
CHIKV-5 | Serum | 2019-03-08 | 1 | F | 35 | Senador Vasconcelos | Rio de Janeiro | 17.91 | 92.8 | 29,490 | MT933033 |
CHIKV-6 | Serum | 2019-03-15 | 5 | M | 1 | Parque Lafaiete | Duque de Caxias | 9.06/9.13 | 93.6 | 67,535 | MT933034 |
CHIKV-7 | Serum | 2019-04-17 | 2 | F | 71 | Quintino Bocaiúva | Rio de Janeiro | 10.77/11.17 | 92.7 | 43,062 | MT933035 |
CHIKV-8 | Serum | 2019-04-17 | 2 | M | 61 | Manguinhos | Rio de Janeiro | 9.67/12.74 | 93.6 | 72,337 | MT933036 |
CHIKV-9 | Serum | 2019-04-18 | 2 | M | 58 | Parque Anchieta | Rio de Janeiro | 13.67/13.68 | 85.6 | 133,675 | MT933037 |
CHIKV-10 | Serum | 2019-04-22 | 1 | M | 88 | Engenho de Dentro | Rio de Janeiro | 9.48/11.46 | 93.6 | 50,757 | MT933038 |
CHIKV-11 | Serum | 2019-05-06 | 4 | M | 77 | Oswaldo Cruz | Rio de Janeiro | 12.05/12.47 | 93.7 | 63,659 | MT933039 |
CHIKV-12 | Serum | 2019-05-06 | 2 | F | 59 | Nossa Senhora do Carmo | Duque de Caxias | 12.76/12.76 | 84.9 | 133,090 | MT933040 |
CHIKV-13 | Serum | 2019-05-08 | 2 | M | 47 | Jacarepaguá | Rio de Janeiro | 13.5/13.5 | 92.8 | 63,092 | MT933041 |
CHIKV-14 | Serum | 2019-05-11 | 1 | M | 35 | NI | Rio de Janeiro | 12.31/15.98 | 90.9 | 113,375 | MT933042 |
CHIKV-15 | Serum | 2019-06-07 | 2 | M | 42 | NI | Rio de Janeiro | 13.47/13.53 | 92 | 81,734 | MT933043 |
CHIKV-16 | Serum | 2019-06-13 | 1 | NB-F | 1d | São Cristóvão | Rio de Janeiro | 8.09/7.57 | 93.5 | 72,843 | MT933044 |
CHIKV-17 | Serum | 2019-06-19 | 1 | M | 57 | Engenho de Dentro | Rio de Janeiro | 12.97/10.52 | 92.7 | 77,390 | MT933045 |
CHIKV-18 | Serum | 2019-07-01 | 2 | F | 50 | Bonsucesso | Rio de Janeiro | 13.8/15.2 | 93.5 | 69,270 | MT933046 |
CHIKV-19 | Serum | 2019-07-02 | 5 | NB-F | 7d | NI | Rio de Janeiro | 5.75/5.79 | 93.8 | 34,979 | MT933047 |
CHIKV-20 | Serum | 2019-07-31 | 11 | F | 46 | NI | Rio de Janeiro | 14.7 | 83.9 | 160,920 | MT933048 |
CHIKV-21 | Serum | 2019-07-07 | 1 | F | 21 | NI | Duque de Caxias | 15.3 | 93.6 | 67,036 | MT933049 |
CHIKV-22 | Serum | 2019-08-14 | 1 | F | 19 | NI | Rio de Janeiro | 14.8/15.5 | 92.7 | 76,999 | MT933050 |
CHIKV-23 | Serum | 2019-05-28 | 2 | M | 63 | Tijuca | Rio de Janeiro | 17.32 | 93.5 | 58,496 | MT933051 |
Polyprotein Region/Amino Acid (aa) Substitution | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type of Protein | Nonstructural Protein (NSP) | Structural Protein (SP) | ||||||||||||||||||
Protein | NSP2 | NSP3 | NSP4 | E2 | 6k | E1 | ||||||||||||||
Sites (Protein) | 57 | 352 | 452 | 466 | 545 | 334 | 111 | 238 | 74 | 178 | 248 | 377 | 52 | 98 | 151 | 211 | 269 | 305 | ||
Strains | Reference | KP164568|BA|2014 | A | P | V | M | A | A | I | W | T | R | L | V | M | A | D | K | V | A |
Clade A | CHIKV-2 | . | A | M | . | S | V | . | . | . | . | . | . | L | . | V | T | M | T | |
CHIKV-3 | . | A | . | . | S | . | . | C | . | . | . | . | . | . | V | T | M | T | ||
CHIKV-4 | . | A | . | . | S | . | . | . | . | . | F | . | L | . | . | T | M | T | ||
CHIKV-5 | . | A | . | L | S | . | . | . | . | . | . | . | L | . | . | T | M | T | ||
CHIKV-6 | . | A | . | . | S | . | . | . | . | . | F | . | . | . | V | T | M | T | ||
CHIKV-7 | . | A | . | . | S | . | . | . | M | . | F | . | L | . | V | T | M | T | ||
CHIKV-8 | . | A | . | L | S | . | . | . | M | . | F | . | L | . | V | T | M | T | ||
CHIKV-9 | . | A | . | . | S | . | . | C | M | . | F | . | L | T | V | T | M | T | ||
CHIKV-10 | . | A | . | L | S | . | . | . | M | . | . | . | L | . | . | T | M | T | ||
CHIKV-12 | . | A | . | . | S | . | . | C | M | . | F | . | . | . | V | T | M | T | ||
CHIKV-13 | . | A | . | . | S | . | . | . | . | . | . | . | L | . | . | T | M | T | ||
CHIKV-14 | . | A | M | . | S | V | . | . | . | . | . | I | L | . | V | T | M | T | ||
CHIKV-15 | . | A | . | L | S | . | . | C | . | . | . | . | . | . | V | T | M | T | ||
CHIKV-16 | . | A | . | L | S | . | . | C | . | . | . | I | . | . | V | T | M | T | ||
CHIKV-17 | . | A | M | . | S | V | . | . | . | . | . | . | L | . | . | T | M | T | ||
CHIKV-18 | . | A | . | . | S | . | . | . | . | . | . | . | L | . | . | T | M | T | ||
CHIKV-19 | . | A | M | . | S | V | . | . | . | . | F | . | . | . | . | T | M | T | ||
CHIKV-20 | . | A | . | . | S | . | . | C | M | . | F | I | L | T | V | T | M | T | ||
CHIKV-21 | . | A | . | . | S | . | . | . | . | . | F | . | L | . | V | T | M | T | ||
CHIKV-22 | . | A | . | . | S | . | . | . | M | . | F | I | L | T | V | T | M | T | ||
CHIKV-23 | . | A | . | . | S | . | . | . | M | . | F | . | L | . | V | T | M | T | ||
Clade B | CHIKV-1 | V | . | . | . | . | . | . | . | . | H | . | I | L | . | V | . | . | . | |
CHIKV-11 | V | . | . | . | . | . | . | . | M | H | F | . | L | T | V | . | M | . |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabri, A.A.; Rodrigues, C.D.d.S.; Santos, C.C.d.; Chalhoub, F.L.L.; Sampaio, S.A.; Faria, N.R.d.C.; Torres, M.C.; Fonseca, V.; Brasil, P.; Calvet, G.; et al. Co-Circulation of Two Independent Clades and Persistence of CHIKV-ECSA Genotype during Epidemic Waves in Rio de Janeiro, Southeast Brazil. Pathogens 2020, 9, 984. https://doi.org/10.3390/pathogens9120984
Fabri AA, Rodrigues CDdS, Santos CCd, Chalhoub FLL, Sampaio SA, Faria NRdC, Torres MC, Fonseca V, Brasil P, Calvet G, et al. Co-Circulation of Two Independent Clades and Persistence of CHIKV-ECSA Genotype during Epidemic Waves in Rio de Janeiro, Southeast Brazil. Pathogens. 2020; 9(12):984. https://doi.org/10.3390/pathogens9120984
Chicago/Turabian StyleFabri, Allison Araújo, Cintia Damasceno dos Santos Rodrigues, Carolina Cardoso dos Santos, Flávia Löwen Levy Chalhoub, Simone Alves Sampaio, Nieli Rodrigues da Costa Faria, Maria Celeste Torres, Vagner Fonseca, Patricia Brasil, Guilherme Calvet, and et al. 2020. "Co-Circulation of Two Independent Clades and Persistence of CHIKV-ECSA Genotype during Epidemic Waves in Rio de Janeiro, Southeast Brazil" Pathogens 9, no. 12: 984. https://doi.org/10.3390/pathogens9120984