Beyond Mosquitoes: A Review of Pediatric Vector-Borne Diseases Excluding Malaria and Arboviral Infections
Abstract
:1. Introduction
2. Tick Bites
3. Sandfly Bite
4. Cimicidae Bites
5. Flea Bites and Associated Diseases
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madison-Antenucci, S.; Kramer, L.D.; Gebhardt, L.L.; Kauffman, E. Emerging Tick-Borne Diseases. Clin. Microbiol. Rev. 2020, 33, e00083-18. [Google Scholar] [CrossRef] [PubMed]
- Parola, P.; Paddock, C.D.; Socolovschi, C.; Labruna, M.G.; Mediannikov, O.; Kernif, T.; Yazid Abdad, M.; Stenos, J.; Bitam, I.; Fournier, P.E.; et al. Update on tick-borne rickettsioses around the world: A geographic approach. Clin. Microbiol. Rev. 2013, 26, 657–702. [Google Scholar] [CrossRef] [PubMed]
- Mukkada, S.; Buckingham, S.C. Recognition of and Prompt Treatment for Tick-Borne Infections in Children. Infect. Dis. Clin. N. Am. 2015, 29, 539–555. [Google Scholar] [CrossRef] [PubMed]
- Ness, T.E.; Martin-Blais, R.; Weatherhead, J.E. How I Approach Leishmaniasis: Diagnosis and Treatment in the United States. J. Pediatr. Infect. Dis. Soc. 2022, 11, 525–532. [Google Scholar] [CrossRef]
- Jones, E.H.; Hinckley, A.F.; Hook, S.A.; Meek, J.I.; Backenson, B.; Kugeler, K.J.; Feldman, K.A. Pet ownership increases human risk of encountering ticks. Zoonoses Public Health 2018, 65, 74–79. [Google Scholar] [CrossRef]
- Dondi, A.; Manieri, E.; Gambuti, G.; Varani, S.; Campoli, C.; Zama, D.; Pierantoni, L.; Baldazzi, M.; Prete, A.; Attard, L.; et al. A 10-Year Retrospective Study on Pediatric Visceral Leishmaniasis in a European Endemic Area: Diagnostic and Short-Course Therapeutic Strategies. Healthcare 2023, 12, 23. [Google Scholar] [CrossRef]
- Goddard, J.; Deshazo, R. Bed bugs (Cimex lectularius) and clinical consequences of their bites. JAMA 2009, 301, 1358–1366. [Google Scholar] [CrossRef]
- Buckingham, S.C.; Marshall, G.S.; Schutze, G.E.; Woods, C.R.; Jackson, M.A.; Patterson, L.E.R.; Jacobs, R.F.; Tick-Borne Infections in Children Study Group. Clinical and laboratory features, hospital course, and outcome of Rocky Mountain spotted fever in children. J. Pediatr. 2007, 150, 180–184.e1. [Google Scholar] [CrossRef]
- Maroli, M.; Rossi, L.; Baldelli, R.; Capelli, G.; Ferroglio, E.; Genchi, C.; Gramiccia, M.; Mortarino, M.; Pietrobelli, M.; Gradoni, L. The northward spread of leishmaniasis in Italy: Evidence from retrospective and ongoing studies on the canine reservoir and phlebotomine vectors. Trop. Med. Int. Health 2008, 13, 256–264. [Google Scholar] [CrossRef]
- Ready, P.D. Epidemiology of visceral leishmaniasis. Clin. Epidemiol. 2014, 6, 147–154. [Google Scholar] [CrossRef]
- CDC Lyme Disease. Available online: https://www.cdc.gov/lyme/index.html (accessed on 12 May 2025).
- Stanek, G.; Wormser, G.P.; Gray, J.; Strle, F. Lyme borreliosis. Lancet 2012, 379, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Pace, D. Leishmaniasis. J. Infect. 2014, 69, S10–S18. [Google Scholar] [CrossRef] [PubMed]
- Shedrawy, J.; Henriksson, M.; Hergens, M.P.; Askling, H.H. Estimating costs and health outcomes of publicly funded tick-born encephalitis vaccination: A cost-effectiveness analysis. Vaccine 2018, 36, 7659–7665. [Google Scholar] [CrossRef] [PubMed]
- Razai, M.S.; Doerholt, K.; Galiza, E.; Oakeshott, P. Tick bite. BMJ 2020, 370, m3029. [Google Scholar] [CrossRef]
- GOV.UK. Tick Bite Risks Prevention of Lyme Disease: Resources, 6 November 2024. Available online: https://www.gov.uk/government/publications/tick-bite-risks-and-prevention-of-lyme-disease (accessed on 13 January 2025).
- Overview | Lyme Disease | Guidance | NICE Guideline, 11 April 2018. Available online: https://www.nice.org.uk/guidance/ng95 (accessed on 13 January 2025).
- Song, J.; Dong, Y.; Zhang, Y.; Zhou, G.; Wu, X.; Gao, L.; Wu, H.; Peng, L.; Yang, J.; Ji, Z.; et al. Seroprevalence of Lyme Disease in Asian Human Populations: A Systematic Review and Meta-Analysis. Vector Borne Zoonotic Dis. 2025; ahead of print. [Google Scholar] [CrossRef]
- Smith, R.; Takkinen, J. Lyme borreliosis: Europe-wide coordinated surveillance and action needed? Eurosurveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull. 2006, 11, E060622.1. [Google Scholar] [CrossRef]
- Pachner, A.R.; Steere, A.C. The triad of neurologic manifestations of Lyme disease: Meningitis, cranial neuritis, and radiculoneuritis. Neurology 1985, 35, 47–53. [Google Scholar] [CrossRef]
- Steere, A.C.; Batsford, W.P.; Weinberg, M.; Alexander, J.; Berger, H.J.; Wolfson, S.; Malawista, S.E. Lyme carditis: Cardiac abnormalities of Lyme disease. Ann. Intern. Med. 1980, 93, 8–16. [Google Scholar] [CrossRef]
- The Long-Term Course of Lyme Arthritis in Children—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/2052061/ (accessed on 15 January 2025).
- Hauser, U.; Lehnert, G.; Wilske, B. Validity of interpretation criteria for standardized Western blots (immunoblots) for serodiagnosis of Lyme borreliosis based on sera collected throughout Europe. J. Clin. Microbiol. 1999, 37, 2241–2247. [Google Scholar] [CrossRef]
- Aguero-Rosenfeld, M.E.; Wang, G.; Schwartz, I.; Wormser, G.P. Diagnosis of lyme borreliosis. Clin. Microbiol. Rev. 2005, 18, 484–509. [Google Scholar] [CrossRef]
- Esposito, S.; Baggi, E.; Villani, A.; Norbedo, S.; Pellegrini, G.; Bozzola, E.; Palumbo, E.; Bosis, S.; Nigro, G.; Garazzino, S.; et al. Management of paediatric Lyme disease in non-endemic and endemic areas: Data from the Registry of the Italian Society for Pediatric Infectious Diseases. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 523–529. [Google Scholar] [CrossRef]
- Esposito, S.; Bosis, S.; Sabatini, C.; Tagliaferri, L.; Principi, N. Borrelia burgdorferi infection and Lyme disease in children. Int. J. Infect. Dis. 2013, 17, e153–e158. [Google Scholar] [CrossRef] [PubMed]
- Andreottola, V.; Santucci, C.; Bellini, T.; Matarese, S.; Canzoneri, F.; Dell’Orso, G.; Finetti, M.; Fioredda, F.; Mesini, A.; Piccotti, E. Visceral Leishmaniasis in Pediatrics: A Case Series and a Narrative Review with Global Insights. Trop. Med. Infect. Dis. 2025, 10, 136. [Google Scholar] [CrossRef] [PubMed]
- CDC—DPDx—Leishmaniasis. 5 June 2024. Available online: https://www.cdc.gov/dpdx/leishmaniasis/index.html (accessed on 27 December 2024).
- Zhang, S.X.; Yang, G.B.; Sun, J.Y.; Li, Y.J.; Yang, J.; Wang, J.C.; Deng, Y. Global, regional, and national burden of Visceral leishmaniasis, 1990–2021: Findings from the global burden of disease study 2021. Parasites Vectors 2025, 18, 157. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Madjou, S.; Virrey, J.F.; Maia-Elkhoury, A.N.; Valadas, S.; Warusavithana, S.; Osman, M.; Yajima, A.; Beshah, A.; Ruiz-Postigo, J.A. Global Leishmaniasis Surveillance Updates 2023: 3 Years of the NTD Road Map; World Health Organization: Rome, Italy, 2024. [Google Scholar]
- Dunya, G.; Loya, A.; Taraif, S.; Adib Houreih, M.; Khalifeh, I. Clinical, microscopic and molecular presentation in pediatric versus adult old world cutaneous Leishmaniasis. Pediatr. Dermatol. 2020, 37, 656–660. [Google Scholar] [CrossRef]
- Pace, D.; Williams, T.N.; Grochowska, A.; Betts, A.; Attard-Montalto, S.; Boffa, M.J.; Vella, C. Manifestations of paediatric Leishmania infantum infections in Malta. Travel Med. Infect. Dis. 2011, 9, 37–46. [Google Scholar] [CrossRef]
- Aronson, N.; Herwaldt, B.L.; Libman, M.; Pearson, R.; Lopez-Velez, R.; Weina, P.; Carvalho, E.; Ephros, M.; Jeronimo, S.; Magill, A. Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Am. J. Trop. Med. Hyg. 2017, 96, 24–45. [Google Scholar] [CrossRef]
- Chen, Z.; Gao, Y.; Zhang, C.; Mao, J. Hemophagocytic lymphohistiocytosis secondary to visceral leishmaniasis in children: Case report and systematic review. Front. Pediatr. 2025, 13, 1561600. [Google Scholar] [CrossRef]
- Cardoso, L.; Schallig, H.; Persichetti, M.F.; Pennisi, M.G. New Epidemiological Aspects of Animal Leishmaniosis in Europe: The Role of Vertebrate Hosts Other Than Dogs. Pathogens 2021, 10, 307. [Google Scholar] [CrossRef]
- Baxarias, M.; Homedes, J.; Mateu, C.; Attipa, C.; Solano-Gallego, L. Use of preventive measures and serological screening tools for Leishmania infantum infection in dogs from Europe. Parasites Vectors 2022, 15, 134. [Google Scholar] [CrossRef]
- Sundar, S.; Agarwal, D. Visceral Leishmaniasis—Optimum Treatment Options in Children. Pediatr. Infect. Dis. J. 2018, 37, 492–494. [Google Scholar] [CrossRef]
- Sampaio, M.J.A.d.Q.; Cavalcanti, N.V.; Alves, J.G.B.; Fernandes Filho, M.J.C.; Correia, J.B. Risk Factors for Death in Children with Visceral Leishmaniasis. PLoS Negl. Trop. Dis. 2010, 4, e877. [Google Scholar] [CrossRef] [PubMed]
- Percivalle, E.; Cassaniti, I.; Calzolari, M.; Lelli, D.; Baldanti, F. Thirteen Years of Phleboviruses Circulation in Lombardy, a Northern Italy Region. Viruses 2021, 13, 209. [Google Scholar] [CrossRef] [PubMed]
- Özkale, Y.; Özkale, M.; Kiper, P.; Çetinkaya, B.; Erol, İ. Sadfly fever: Two case reports. Turk. Arch. Pediatr. Pediatri Arş. 2016, 51, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Miles, L.S.; Verrelli, B.C.; Adams, R.; Francioli, Y.Z.; Card, D.C.; Balvin, O.; Castoe, T.A.; Booth, W. Were bed bugs the first urban pest insect? Genome-wide patterns of bed bug demography mirror global human expansion. Biol. Lett. 2025, 21, 20250061. [Google Scholar] [CrossRef]
- Delaunay, P.; Blanc, V.; Del Giudice, P.; Levy-Bencheton, A.; Chosidow, O.; Marty, P.; Brouqui, P. Bedbugs and Infectious Diseases. Clin. Infect. Dis. 2011, 52, 200–210. [Google Scholar] [CrossRef]
- Paul, J. Is infestation with the common bedbug increasing? BMJ 2000, 320, 1141. [Google Scholar] [CrossRef]
- Reinhardt, K.; Kempke, D.; Naylor, R.A.; Siva-Jothy, M.T. Sensitivity to bites by the bedbug, Cimex lectularius. Med. Vet. Entomol. 2009, 23, 163–166. [Google Scholar] [CrossRef]
- Daiter, A.B. [The bedbug as a possible reservoir of Rickettsia burneti. (Experimental and epidemiological data)]. Vopr. Virusol. 1960, 6, 591–598. [Google Scholar]
- Yen, J.H.; Barr, A.R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 1971, 232, 657–658. [Google Scholar] [CrossRef]
- Sakamoto, J.M.; Rasgon, J.L. Geographic Distribution of Wolbachia Infections in Cimex lectularius (Heteroptera: Cimicidae). J. Med. Entomol. 2006, 43, 696–700. [Google Scholar] [CrossRef]
- Jeyaprakash, A.; Hoy, M.A. Long PCR improves Wolbachia DNA amplification: Wsp sequences found in 76% of sixty-three arthropod species. Insect Mol. Biol. 2000, 9, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Knight, J. Meet the Herod bug. Nature 2001, 412, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Salazar, R.; Castillo-Neyra, R.; Tustin, A.W.; Borrini-Mayorí, K.; Náquira, C.; Levy, M.Z. Bed Bugs (Cimex lectularius) as Vectors of Trypanosoma cruzi. Am. Soc. Trop. Med. Hyg. 2015, 92, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Bayona-i-Carrasco, J.; Avila-Tàpies, R. Latin Americans and Caribbeans in Europe: A Cross-Country Analysis. Int. Migr. 2020, 58, 198–218. [Google Scholar] [CrossRef]
- Basile, L.; Jansa, J.M.; Carlier, Y.; Salamanca, D.D.; Angheben, A.; Bartoloni, A.; Seixas, J.; Van Gool, T.; Cañavate, C.; Flores-Chávez, M.; et al. Chagas disease in European countries: The challenge of a surveillance system. Eurosurveillance 2011, 16, 19968. [Google Scholar] [CrossRef]
- Antinori, S.; Giacomelli, A.; Sabaini, F.; Casalini, G.; Ridolfo, A.L. Chagas disease in Italy: An update of epidemiological studies. Infez. Med. 2023, 31, 421–424. [Google Scholar]
- Navarro, M.; Reguero, L.; Subirà, C.; Blázquez-Pérez, A.; Requena-Méndez, A. Estimating chagas disease prevalence and number of underdiagnosed, and undertreated individuals in Spain. Travel Med. Infect. Dis. 2022, 47, 102284. [Google Scholar] [CrossRef]
- Gonzalez-Sanz, M.; Crespillo-Andújar, C.; Chamorro-Tojeiro, S.; Monge-Maillo, B.; Perez-Molina, J.A.; Norman, F.F. Chagas Disease in Europe. Trop. Med. Infect. Dis. 2023, 8, 513. [Google Scholar] [CrossRef]
- Cevallos, A.M.; Hernández, R. Chagas’ disease: Pregnancy and congenital transmission. BioMed Res. Int. 2014, 2014, 401864. [Google Scholar] [CrossRef]
- Howard, E.J.; Xiong, X.; Carlier, Y.; Sosa-Estani, S.; Buekens, P. Frequency of the congenital transmission of Trypanosoma cruzi: A systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2014, 121, 22–33. [Google Scholar] [CrossRef]
- Kemmerling, U.; Osuna, A.; Schijman, A.G.; Truyens, C. Congenital Transmission of Trypanosoma cruzi: A Review About the Interactions Between the Parasite, the Placenta, the Maternal and the Fetal/Neonatal Immune Responses. Front. Microbiol. 2019, 10, 1854. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.S.; Montgomery, S.P. Congenital Chagas disease: Progress toward implementation of pregnancy-based screening. Curr. Opin. Infect. Dis. 2021, 34, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Colombo, V.; Giacomelli, A.; Casazza, G.; Galimberti, L.; Bonazzetti, C.; Sabaini, F.; Ridolfo, A.L.; Antinori, S. Trypanosoma cruzi infection in Latin American pregnant women living outside endemic countries and frequency of congenital transmission: A systematic review and meta-analysis. J. Travel Med. 2021, 28, taaa170. [Google Scholar] [CrossRef] [PubMed]
- Matthews, S.; Tannis, A.; Puchner, K.P.; Bottazzi, M.E.; Cafferata, M.L.; Comandé, D.; Buekens, P. Estimation of the morbidity and mortality of congenital Chagas disease: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2022, 16, e0010376. [Google Scholar] [CrossRef]
- Klein, M.D.; Proaño, A.; Noazin, S.; Sciaudone, M.; Gilman, R.H.; Bowman, N.M. Risk factors for vertical transmission of Chagas disease: A systematic review and meta-analysis. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2021, 105, 357–373. [Google Scholar] [CrossRef]
- Norman, F.F.; López-Vélez, R. Chagas disease and breast-feeding. Emerg. Infect. Dis. 2013, 19, 1561–1566. [Google Scholar] [CrossRef]
- Tyler, K.M.; Engman, D.M. The life cycle of Trypanosoma cruzi revisited. Int. J. Parasitol. 2001, 31, 472–481. [Google Scholar] [CrossRef]
- Martín-Escolano, J.; Marín, C.; Rosales, M.J.; Tsaousis, A.D.; Medina-Carmona, E.; Martín-Escolano, R. An Updated View of the Trypanosoma cruzi Life Cycle: Intervention Points for an Effective Treatment. ACS Infect. Dis. 2022, 8, 1107–1115. [Google Scholar] [CrossRef]
- Dias, E.; Laranja, F.S.; Miranda, A.; Nobrega, G. Chagas’ disease; a clinical, epidemiologic, and pathologic study. Circulation 1956, 14, 1035–1060. [Google Scholar] [CrossRef]
- Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet 2018, 391, 82–94. [Google Scholar] [CrossRef]
- Dias, J.C. The indeterminate form of human chronic Chagas’ disease: A clinical epidemiological review. Rev. Soc. Bras. Med. Trop. 1989, 22, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Viotti, R.; Vigliano, C.; Lococo, B.; Bertocchi, G.; Petti, M.; Alvarez, M.G.; Postan, M.; Armenti, A. Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment: A nonrandomized trial. Ann. Intern. Med. 2006, 144, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Salvador, F.; Treviño, B.; Sulleiro, E.; Pou, D.; Sánchez-Montalvá, A.; Cabezos, J.; Soriano, A.; Serre, N.; i Prat, J.G.; Pahissa, A.; et al. Trypanosoma cruzi infection in a non-endemic country: Epidemiological and clinical profile. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Rassi, A.; Rassi, S.G.; Rassi, A. Sudden death in Chagas’ disease. Arq. Bras. Cardiol. 2001, 76, 75–96. [Google Scholar] [CrossRef]
- Rassi, A.; Rassi, A.; Little, W.C. Chagas’ heart disease. Clin. Cardiol. 2000, 23, 883–889. [Google Scholar] [CrossRef]
- Cardoso, R.N.; Macedo, F.Y.B.; Garcia, M.N.; Garcia, D.C.; Benjo, A.M.; Aguilar, D.; Jneid, H.; Bozkurt, B. Chagas cardiomyopathy is associated with higher incidence of stroke: A meta-analysis of observational studies. J. Card. Fail. 2014, 20, 931–938. [Google Scholar] [CrossRef]
- Pérez-Ayala, A.; Pérez-Molina, J.A.; Norman, F.; Monge-Maillo, B.; Faro, M.V.; López-Vélez, R. Gastro-intestinal Chagas disease in migrants to Spain: Prevalence and methods for early diagnosis. Ann. Trop. Med. Parasitol. 2011, 105, 25–29. [Google Scholar] [CrossRef]
- WHO Expert Committee on the Control of Chagas Disease. Control of Chagas Disease: Second Report of the WHO Expert Committee; World Health Organization: Rome, Italy, 2002; Available online: https://iris.who.int/handle/10665/42443 (accessed on 2 October 2024).
- Bua, J.; Volta, B.J.; Perrone, A.E.; Scollo, K.; Velázquez, E.B.; Ruiz, A.M.; De Rissio, A.M.; Cardoni, R.L. How to improve the early diagnosis of Trypanosoma cruzi infection: Relationship between validated conventional diagnosis and quantitative DNA amplification in congenitally infected children. PLoS Negl. Trop. Dis. 2013, 7, e2476. [Google Scholar] [CrossRef]
- Bern, C.; Montgomery, S.P.; Herwaldt, B.L.; Rassi, A.; Marin-Neto, J.A.; Dantas, R.O.; Maguire, J.H.; Acquatella, H.; Morillo, C.; Kirchhoff, L.V.; et al. Evaluation and treatment of chagas disease in the United States: A systematic review. JAMA 2007, 298, 2171–2181. [Google Scholar] [CrossRef]
- Rodriques Coura, J.; de Castro, S.L. A critical review on Chagas disease chemotherapy. Mem. Inst. Oswaldo Cruz 2002, 97, 3–24. [Google Scholar] [CrossRef]
- Schijman, A.G.; Altcheh, J.; Burgos, J.M.; Biancardi, M.; Bisio, M.; Levin, M.J.; Freilij, H. Aetiological treatment of congenital Chagas’ disease diagnosed and monitored by the polymerase chain reaction. J. Antimicrob. Chemother. 2003, 52, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Fabbro, D.L.; Streiger, M.L.; Arias, E.D.; Bizai, M.L.; del Barco, M.; Amicone, N.A. Trypanocide treatment among adults with chronic Chagas disease living in Santa Fe city (Argentina), over a mean follow-up of 21 years: Parasitological, serological and clinical evolution. Rev. Soc. Bras. Med. Trop. 2007, 40, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dang, K.; Doggett, S.L.; Veera Singham, G.; Lee, C.Y. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Parasites Vectors 2017, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Akhoundi, M.; Zumelzu, C.; Sereno, D.; Marteau, A.; Brun, S.; Jan, J.; Izri, A. Bed Bugs (Hemiptera, Cimicidae): A Global Challenge for Public Health and Control Management. Diagnostics 2023, 13, 2281. [Google Scholar] [CrossRef]
- Naylor, R.A.; Boase, C.J. Practical solutions for treating laundry infested with Cimex lectularius (Hemiptera: Cimicidae). J. Econ. Entomol. 2010, 103, 136–139. [Google Scholar] [CrossRef]
- Anderson, J.; Paterek, E. Flea Bites. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: http://www.ncbi.nlm.nih.gov/books/NBK541118/ (accessed on 26 January 2024).
- Iannino. Fleas of dog and cat: Species, biology and flea-borne diseases. Vet. Ital. 2017, 53, 273–275. [Google Scholar] [CrossRef]
- O’Donnell, M.; Elston, D.M. What’s Eating You? Human Flea (Pulex irritans). Cutis 2020, 106, 233–235. [Google Scholar] [CrossRef]
- Youssefi, M.R.; Rahimi, M.T. Extreme human annoyance caused by Ctenocephalides felis felis (cat flea). Asian Pac. J. Trop. Biomed. 2014, 4, 334–336. [Google Scholar] [CrossRef]
- Youssefi, M.R.; Ebrahimpour, S.; Rezaei, M.; Ahmadpour, E.; Rakhshanpour, A.; Rahimi, M.T. Dermatitis caused by Ctenocephalides felis (cat flea) in human. Casp. J. Intern. Med. 2014, 5, 248–250. [Google Scholar]
- Haddad Junior, V.; Amorim, P.C.H.D.; Haddad Junior, W.T.; Cardoso, J.L.C. Venomous and poisonous arthropods: Identification, clinical manifestations of envenomation, and treatments used in human injuries. Rev. Soc. Bras. Med. Trop. 2015, 48, 650–657. [Google Scholar] [CrossRef]
- Cestari, T.F.; Pessato, S.; Ramos-e-Silva, M. Tungiasis and myiasis. Clin. Dermatol. 2007, 25, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Sanusi, I.D.; Brown, E.B.; Shepard, T.G.; Grafton, W.D. Tungiasis: Report of one case and review of the 14 reported cases in the United States. J. Am. Acad. Dermatol. 1989, 20 Pt 2, 941–944. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.D.; Procop, G.W. Typical Histologic Features of Tunga penetrans in Skin Biopsies. Arch. Pathol. Lab. Med. 2002, 126, 714–716. [Google Scholar] [CrossRef] [PubMed]
- Peres, G.; Yugar, L.B.T.; Haddad, V., Jr. Breakfast, lunch, and dinner sign: A hallmark of flea and bedbug bites. An. Bras. Dermatol. 2018, 93, 759–760. [Google Scholar] [CrossRef]
- Singh, S.; Mann, B.K. Insect bite reactions. Indian J. Dermatol. Venereol. Leprol. 2013, 79, 151–164. [Google Scholar] [CrossRef]
- Salgado, F.; Elston, D.M. What’s eating you? sticktight flea revisited. Cutis 2017, 100, 49. [Google Scholar]
- Yang, R. Plague: Recognition, Treatment, and Prevention. J. Clin. Microbiol. 2018, 56, e01519-17. [Google Scholar] [CrossRef]
- Bramanti, B.; Stenseth, N.C.; Walløe, L.; Lei, X. Plague: A Disease Which Changed the Path of Human Civilization. In Yersinia Pestis: Retrospective and Perspective; Yang, R., Anisimov, A., Eds.; Advances in Experimental Medicine and Biology; Springer: Amsterdam, The Netherlands, 2016; Volume 918, pp. 1–26. [Google Scholar] [CrossRef]
- Yang, R.; Anisimov, A. (Eds.) Yersinia Pestis: Retrospective and Perspective; Springer: Amsterdam, The Netherlands, 2016; Volume 918. [Google Scholar] [CrossRef]
- Eisen, R.J.; Griffith, K.S.; Borchert, J.N.; MacMillan, K.; Apangu, T.; Owor, N.; Acayo, S.; Acidri, R.; Zielinski-Gutierrez, E.; Winters, A.M.; et al. Assessing Human Risk of Exposure to Plague Bacteria in Northwestern Uganda Based on Remotely Sensed Predictors. Am. Soc. Trop. Med. Hyg. 2010, 82, 904–911. [Google Scholar] [CrossRef]
- Barbieri, R.; Texier, G.; Keller, C.; Drancourt, M. Soil salinity and aridity specify plague foci in the United States of America. Sci. Rep. 2020, 10, 6186. [Google Scholar] [CrossRef]
- Anisimov, A.P.; Lindler, L.E.; Pier, G.B. Intraspecific diversity of Yersinia pestis. Clin. Microbiol. Rev. 2004, 17, 434–464. [Google Scholar] [CrossRef]
- Hinnebusch, B.J. The evolution of flea-borne transmission in Yersinia pestis. Curr. Issues Mol. Biol. 2005, 7, 197–212. [Google Scholar] [PubMed]
- Wilder, A.P.; Eisen, R.J.; Bearden, S.W.; Montenieri, J.A.; Tripp, D.W.; Brinkerhoff, R.J.; Gage, K.L.; Antolin, M.F. Transmission Efficiency of Two Flea Species (Oropsylla tuberculata cynomuris and Oropsylla hirsuta) Involved in Plague Epizootics among Prairie Dogs. EcoHealth 2008, 5, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Eisen, R.J.; Wilder, A.P.; Bearden, S.W.; Montenieri, J.A.; Gage, K.L. Early-Phase Transmission of Yersinia pestis by Unblocked Xenopsylla cheopis (Siphonaptera: Pulicidae) Is as Efficient as Transmission by Blocked Fleas. J. Med. Entomol. 2007, 44, 678–682. [Google Scholar] [CrossRef] [PubMed]
- Lorange, E.A.; Race, B.L.; Sebbane, F.; Joseph Hinnebusch, B. Poor Vector Competence of Fleas and the Evolution of Hypervirulence in Yersinia pestis. J. Infect. Dis. 2005, 191, 1907–1912. [Google Scholar] [CrossRef]
- Cavanaugh, D.C. Specific Effect of Temperature Upon Transmission of the Plague Bacillus by the Oriental Rat Flea, Xenopsylla Cheopis. Am. J. Trop. Med. Hyg. 1971, 20, 264–273. [Google Scholar] [CrossRef]
- Bland, D.M.; Hinnebusch, B.J. Feeding Behavior Modulates Biofilm-Mediated Transmission of Yersinia pestis by the Cat Flea, Ctenocephalides felis. PLoS Negl. Trop. Dis. 2016, 10, e0004413. [Google Scholar] [CrossRef]
- Butler, T. Plague into the 21st Century. Clin. Infect. Dis. 2009, 49, 736–742. [Google Scholar] [CrossRef]
- Doyle, T.M.; Matuschak, G.M.; Lechner, A.J. Septic shock and nonpulmonary organ dysfunction in pneumonic plague: The role of Yersinia pestis pCD1- vs. pgm- virulence factors. Crit. Care Med. 2010, 38, 1574–1583. [Google Scholar] [CrossRef]
- Barbieri, R.; Signoli, M.; Chevé, D.; Costedoat, C.; Tzortzis, S.; Aboudharam, G.; Raoult, D.; Drancourt, M. Yersinia pestis: The Natural History of Plague. Clin. Microbiol. Rev. 2020, 34, e00044-19. [Google Scholar] [CrossRef]
- Gage, K.L.; Dennis, D.T.; Orloski, K.A.; Ettestad, P.; Brown, T.L.; Reynolds, P.J.; Pape, W.J.; Fritz, C.L.; Carter, L.G.; Stein, J.D. Cases of Cat-Associated Human Plague in the Western US, 1977–1998. Clin. Infect. Dis. 2000, 30, 893–900. [Google Scholar] [CrossRef]
- Demeure, C.E.; Dussurget, O.; Mas Fiol, G.; Le Guern, A.S.; Savin, C.; Pizarro-Cerdá, J. Yersinia pestis and plague: An updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics. Genes Immun. 2019, 20, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Anisimov, A.P.; Amoako, K.K. Treatment of plague: Promising alternatives to antibiotics. J. Med. Microbiol. 2006, 55, 1461–1475. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.A.; Meaney-Delman, D.; Fleck-Derderian, S.; Cooley, K.M.; Yu, P.A.; Mead, P.S. Antimicrobial Treatment and Prophylaxis of Plague: Recommendations for Naturally Acquired Infections and Bioterrorism Response. MMWR Recomm. Rep. 2021, 70, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, L.L.; Ettestad, P.; Fogarty, J.D.; Dennis, D.T.; Romig, D.; Mertz, G. Gentamicin and Tetracyclines for the Treatment of Human Plague: Review of 75 Cases in New Mexico, 1985–1999. Clin. Infect. Dis. 2004, 38, 663–669. [Google Scholar] [CrossRef]
- Galimand, M.; Guiyoule, A.; Gerbaud, G.; Rasoamanana, B.; Chanteau, S.; Carniel, E.; Courvalin, P. Multidrug Resistance in Yersinia pestis Mediated by a Transferable Plasmid. N. Engl. J. Med. 1997, 337, 677–681. [Google Scholar] [CrossRef]
- CDC Clinical Care of Plague. Plague, 9 July 2024. Available online: https://www.cdc.gov/plague/hcp/clinical-care/index.html (accessed on 18 January 2025).
- Baranowski, K.; Huang, B. Cat Scratch Disease. [Updated 12 June 2023]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK482139/ (accessed on 18 January 2025).
- Yoshida, H.; Kusaba, N.; Sada, M. Clinical Analysis of Cat Scratch Disease. Kansenshogaku Zasshi 2010, 84, 292–295. [Google Scholar] [CrossRef]
- Stroescu, R.F.; Chisavu, F.; Steflea, R.M.; Doros, G.; Bizerea-Moga, T.-O.; Vulcanescu, D.D.; Marti, T.D.; Boru, C.; Avram, C.R.; Gafencu, M. A Retrospective Analysis of Systemic Bartonella henselae Infection in Children. Microorganisms 2024, 12, 666. [Google Scholar] [CrossRef]
- Pelton, S.I.; Kim, J.Y.; Kradin, R.L. Case 27-2006: A 17-Year-Old Boy with Fever and Lesions in the Liver and Spleen. N. Engl. J. Med. 2006, 355, 941–948. [Google Scholar] [CrossRef]
- Jost, M.; Latz, A.; Ballhorn, W.; Kempf, V.A.J. Development of a Specific and Sensitive Enzyme-Linked Immunosorbent Assay as an In Vitro Diagnostic Tool for Detection of Bartonella henselae Antibodies in Human Serum. J. Clin. Microbiol. 2018, 56, e01329-18. [Google Scholar] [CrossRef]
- Pennisi, M.G.; Marsilio, F.; Hartmann, K.; Lloret, A.; Addie, D.; Belák, S.; Boucraut-Baralon, C.; Egberink, H.; Frymus, T.; Gruffydd-Jones, T.; et al. Bartonella Species Infection in Cats: ABCD guidelines on prevention and management. J. Feline Med. Surg. 2013, 15, 563–569. [Google Scholar] [CrossRef]
- Niedzielska, G.; Kotowski, M.; Niedzielski, A.; Dybiec, E.; Wieczorek, P. Cervical lymphadenopathy in children—Incidence and diagnostic management. Int. J. Pediatr. Otorhinolaryngol. 2007, 71, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Sodini, C.; Zani, E.M.; Pecora, F.; Conte, C.; Patianna, V.D.; Prezioso, G.; Principi, N.; Esposito, S. A Case of Atypical Bartonellosis in a 4-Year-Old Immunocompetent Child. Microorganisms 2021, 9, 950. [Google Scholar] [CrossRef] [PubMed]
- Pecora, F.; Abate, L.; Scavone, S.; Petrucci, I.; Costa, F.; Caminiti, C.; Argentiero, A.; Esposito, S. Management of Infectious Lymphadenitis in Children. Children 2021, 8, 860. [Google Scholar] [CrossRef] [PubMed]
- Mansueto, P.; Vitale, G.; Seidita, A.; Pepe, I.; Carroccio, A.; di Rosa, S.; Rini, G.B.; Cillari, E.; Walker, D.H. New Insight into Immunity and Immunopathology of Rickettsial Diseases. Clin. Dev. Immunol. 2012, 2012, 1–26. [Google Scholar] [CrossRef]
- Satjanadumrong, J.; Robinson, M.T.; Hughes, T.; Blacksell, S.D. Distribution and Ecological Drivers of Spotted Fever Group Rickettsia in Asia. EcoHealth 2019, 16, 611–626. [Google Scholar] [CrossRef]
- Adem, P.V. Emerging and re-emerging rickettsial infections. Semin. Diagn. Pathol. 2019, 36, 146–151. [Google Scholar] [CrossRef]
- Binder, A.M.; Armstrong, P.A. Patient characteristics, treatment patterns, and outcomes of Rickettsial diseases among a commercially insured population in the United States, 2005–2017. Sci. Rep. 2021, 11, 18382. [Google Scholar] [CrossRef]
Risk Factors | Description |
---|---|
Living or Traveling in Endemic Areas | Areas where rickettsial diseases are common, including parts of North and South America, Africa, and Asia. |
Outdoor Activities | Hiking, camping, or working in wooded areas or grasslands, where ticks and fleas are prevalent. |
Occupational Risk | People working in agriculture, forestry, or veterinary fields are at higher risk due to frequent exposure to animals and insects. |
Close Contact with Animals | Animals (especially rodents, cattle, and dogs) can be hosts for arthropods that carry rickettsial bacteria. |
Poor Hygiene and Crowding | Environments with limited sanitation and crowded living conditions (e.g., prisons, shelters) can increase the risk of lice- and flea-borne rickettsiosis. |
Climate | Warmer climates, particularly with seasonal changes (e.g., summer), support the growth and activity of vector organisms like ticks and fleas. |
Immunocompromised States | Individuals with weakened immune systems (e.g., due to HIV, chemotherapy, or immunosuppressive drugs) may be more susceptible to severe disease. |
Age | Both young children and the elderly may be at higher risk of severe complications from rickettsiosis. |
Lack of Preventive Measures | Inadequate use of insect repellents, protective clothing, or tick checks can increase the risk of exposure. |
Exposure to Arthropod Vectors | Rickettsiosis is transmitted through bites from infected ticks, fleas, or lice. |
Disease | Common Symptoms | Treatment |
---|---|---|
Lyme disease | Rash (bullseye), fever, fatigue, headache, muscle and joint pain, lymphadenopathy, facial palsy, meningitidis and encephalopathy, atrio-ventricular block, syncope or dizziness. | Doxycycline, Amoxicillin or Cefuroxime Axetil if localized desease Ceftriaxone of Cefotaxime for disseminated desease |
Rickettsiosis | Fever, headache, maculopapular rash, muscle aches, nausea, vomiting, loss of appetite | Doxycycline or Azithromycin |
Tularemia | Fever, chills, myalgias, vomiting, fatigue, headache, skin ulcer at the site of infection, lymphadenopathy. | Doxycycline or Ciprofloxacin for mild forms Gentamicin and Streptomycin for severe forms |
Babesiosis | Fever, chills, sweats, hemolytic anemia, splenomegaly, hepatomegaly, jaundice, fatigue, malaise, and disseminated intravascular coagulation (DIC) | Clindamycin and Quinine |
Tick-borne encephalitis (TBE) | Fever, headache, stiff neck, vomiting, fatigue, meningeal signs, in severe cases: paralysis | No specific antiviral treatment, supportive care |
Dosage ≥ 12 Years | Dosage < 12 Years | Healing Rate | |
---|---|---|---|
Nifurtimox | Acute phase: 10–15 mg/kg in 3–4 doses for 60–90 days Chronic phase: 8–10 mg/kg for 60–90 days | Acute phase: 15 mg/kg in 3–4 doses for 60 days Chronic phase: 8–10 mg/kg for 60–90 days | 86% in children and 7–8% in adults. Side effects in 43–97.5%: anorexia and weight loss, neurological disorders, nausea and vomiting, fever, and rash. |
Benznidazole | Acute phase: 5–10 mg/kg in 2–3 doses for 60 days Chronic phase: 5–7.5 mg/kg for 60 days | Acute phase: 10 mg/kg in 2–3 doses for 60 days Chronic phase: 5–7.5 mg/kg for 60 days | Close to 100% in patients with congenital disease if treated within the first year of life, 76% in adults with acute disease, 60 to 93% in chronic children, and 2 to 40% in chronic adults. Most common side effects: rash, anorexia, asthenia, headache, and sleep disturbances. |
Antibiotic | Dose | Rout of Administration |
---|---|---|
Streptomycin | 15 mg/kg twice daily (max 2 g/day) | IM |
Gentamicin | 2.5 mg/kg/dose every 8 h | IM or IV |
Levofloxacin | 8 mg/kg/dose every 12 h (max 250 mg/dose) | IV |
Ciprofloxacin | 15 mg/kg/dose every 12 h | |
Doxycycline | Weight < 45 kg: 2.2 mg/kg twice a day (max 100 mg/dose) Weight > 45 kg 200 mg loading dose, then 100 mg every 12 h | IV |
Chloramphenicol (if age > 2 years) | 25 mg/kg every 6 h (maximum daily dose, 4 g) | IV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbone, G.; De Bona, A.; Septelici, D.; Cipri, A.; Nobilio, A.; Esposito, S. Beyond Mosquitoes: A Review of Pediatric Vector-Borne Diseases Excluding Malaria and Arboviral Infections. Pathogens 2025, 14, 553. https://doi.org/10.3390/pathogens14060553
Carbone G, De Bona A, Septelici D, Cipri A, Nobilio A, Esposito S. Beyond Mosquitoes: A Review of Pediatric Vector-Borne Diseases Excluding Malaria and Arboviral Infections. Pathogens. 2025; 14(6):553. https://doi.org/10.3390/pathogens14060553
Chicago/Turabian StyleCarbone, Giulia, Amina De Bona, Dragos Septelici, Alessandro Cipri, Andrea Nobilio, and Susanna Esposito. 2025. "Beyond Mosquitoes: A Review of Pediatric Vector-Borne Diseases Excluding Malaria and Arboviral Infections" Pathogens 14, no. 6: 553. https://doi.org/10.3390/pathogens14060553
APA StyleCarbone, G., De Bona, A., Septelici, D., Cipri, A., Nobilio, A., & Esposito, S. (2025). Beyond Mosquitoes: A Review of Pediatric Vector-Borne Diseases Excluding Malaria and Arboviral Infections. Pathogens, 14(6), 553. https://doi.org/10.3390/pathogens14060553