Trypanosoma cruzi: Genomic Diversity and Structure
Abstract
1. Introduction to the Biology and Genetics of Trypanosoma cruzi
2. Genomic Variability of T. cruzi
2.1. Genetic Classification of T. cruzi
2.2. Strain Diversity
Strain | DTU | Size (Mb) | Contigs | Contig N50 (kb) | %GC | Date of Version | Sequencing Method | Reference |
---|---|---|---|---|---|---|---|---|
G | I | 25.17 | 5531 | 6.70 | 50 | 11-2018 | Roche 454 | [49] |
Dm28c | I | 27.35 | 1210 | 78.39 | 50.5 | 11-2013 | [46] | |
Dm28c | I | 53.27 | 636 | 317.64 | 51.5 | 05-2018 | PacBio | [55] |
Dm28 | I | 17.23 | 6541 | 3.66 | 48.5 | 07-2021 | Ion Torrent | [52] |
B.M. López | I | 18.51 | 5923 | 5.13 | 48.5 | 02-2020 | ||
Sylvio X10/1 | I | 38.59 | 27,019 | 2.31 | 51 | 10-2012 | Roche 454 + Illumina | [45] |
STIB980 | I | 27.90 | 400 | 165.58 | 50.5 | 11-2023 | Illumina + Nanopore | [60] |
Brazil clone A4 | I | 45.56 | 697 | 191.35 | 51.5 | 11-2020 | Illumina + PacBio | [59] |
Dm25 | I | 45.40 | 179 | 496.17 | 51.5 | 02-2024 | PacBio HiFi | [57] |
Arequipa | I | 19.05 | 10,332 | 1.91 | 51 | Roche 454 | [18] | |
Colombiana | I | 30.85 | 9547 | 4.90 | 51 | |||
S11 | II | 28.48 | 32,451 | 1.75 | 49 | 09-2018 | Illumina | [53] |
S154a | II | 19.27 | 17,529 | 1.72 | 49 | |||
S15 | II | 27.51 | 31,694 | 2.00 | 49 | |||
S162 | II | 27.30 | 30,605 | 1.85 | 49 | |||
S23b | II | 28.13 | 32,315 | 1.87 | 49 | |||
S44a | II | 17.19 | 16,687 | 2.16 | 49 | |||
S92a | II | 27.08 | 31,256 | 1.91 | 49 | |||
Y cl2 | II | 25.91 | 26,074 | 2.03 | 49 | |||
Y cl4 | II | 26.14 | 26,957 | 2.06 | 49 | |||
Y cl6 | II | 25.78 | 26,253 | 2.05 | 49 | |||
Y nc | II | 29.99 | 9164 | 5.13 | 50.5 | Roche 454 | [18] | |
Y | II | 39.04 | 9821 | 11.96 | 50 | 10-2017 | Illumina | [47] |
Y | II | 15.55 | 6942 | 2.89 | 50 | 07-2021 | Ion Torrent | [52] |
Y clone C6 | II | 47.22 | 477 | 396.94 | 51.5 | 11-2020 | Illumina + PacBio | [59] |
Berenice | II | 40.80 | 934 | 148.96 | 51 | 06-2020 | Illumina + Nanopore | [58] |
Ikiakarora | III | 18.49 | 11,096 | 2.19 | 48.5 | 02-2020 | Ion Torrent | [52] |
231 | III | 35.36 | 8469 | 5.30 | 48.6 | 01-2018 | Illumina | [48] |
SOL | V | 20.06 | 11,944 | 2.17 | 49.5 | 07-2021 | Ion Torrent | [52] |
Bug2148 | I/V | 55.16 | 929 | 200.36 | 51.5 | 10-2017 | PacBio | [47] |
SC43 | V | 79.9 | 1318 | 238.74 | 51.5 | 11-2020 | Illumina | [50] |
CL | VI | 26.77 | 6344 | 4.07 | 50.5 | 11-2018 | Roche 454 | [49] |
TCC | VI | 87.06 | 1236 | 264.20 | 51.5 | 05-2018 | PacBio | [55] |
Tulahuen | VI | 48.46 | 75 | 872.48 | 52 | 12-2023 | Nanopore | [56] |
CL Brener | VI | 19.53 | 11,101 | 2.3 | 49.5 | 07-2021 | Ion Torrent | [52] |
CL Brener | VI | 89.94 | 32,746 | 14.67 | 51.5 | 08-2005 | Sanger | [42] |
B7 | --- | 34.23 | 23,154 | 2.85 | 51 | 10-2012 | Roche 454 + Illumina | [51] |
Strain | DTU | Size (Mb) | Contigs | Contig N50 (kb) | %GC | Date of Version | Sequencing Method |
---|---|---|---|---|---|---|---|
JR cl4 | I | 41.48 | 18,103 | 7.41 | 51.5 | 01-2013 | Roche 454 |
Tula cl2 | I | 83.51 | 53,083 | 2.19 | 51.5 | 04-2013 | Roche 454 |
Dm28c | I | 50.93 | 1028 | 110.59 | 51.5 | 09-2017 | PacBio |
H1 | I | 27.34 | 11,257 | 16.44 | 49.5 | 02-2023 | Illumina + PacBio + Nanopore |
Esmeraldo cl3 | II | 38.08 | 20,187 | 5.35 | 51 | 01-2013 | Roche 454 |
3. Genomic Structure
3.1. Chromosomes and Ploidy
3.2. Genome Organization
3.3. Replication Origin
3.4. Chromatin, Transcription and Gene Regulation of T. cruzi
4. Multi-Gene Families of T. cruzi
4.1. Trans-Sialidases (TSs)
4.2. Mucin-Associated Surface Proteins (MASPs)
4.3. Mucins
4.4. DGF-1
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maslov, D.A.; Opperdoes, F.R.; Kostygov, A.Y.; Hashimi, H.; Lukeš, J.; Yurchenko, V. Recent Advances in Trypanosomatid Research: Genome Organization, Expression, Metabolism, Taxonomy and Evolution. Parasitology 2019, 146, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Lukeš, J.; Butenko, A.; Hashimi, H.; Maslov, D.A.; Votýpka, J.; Yurchenko, V. Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree. Trends Parasitol. 2018, 34, 466–480. [Google Scholar] [CrossRef] [PubMed]
- Hajduk, S.; Ochsenreiter, T. RNA Editing in Kinetoplastids. RNA Biol. 2010, 7, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.P. Genome Evolution in Trypanosomatid Parasites. Parasitology 2015, 142 (Suppl. 1), S40–S56. [Google Scholar] [CrossRef]
- Kaufer, A.; Ellis, J.; Stark, D.; Barratt, J. The Evolution of Trypanosomatid Taxonomy. Parasit. Vectors 2017, 10, 287. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.C.F.; Godinho, J.L.P.; de Souza, W. Biology of Human Pathogenic Trypanosomatids: Epidemiology, Lifecycle and Ultrastructure. Subcell. Biochem. 2014, 74, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Schwabl, P.; Imamura, H.; Van den Broeck, F.; Costales, J.A.; Maiguashca-Sánchez, J.; Miles, M.A.; Andersson, B.; Grijalva, M.J.; Llewellyn, M.S. Meiotic Sex in Chagas Disease Parasite Trypanosoma cruzi. Nat. Commun. 2019, 10, 3972. [Google Scholar] [CrossRef]
- Berry, A.S.F.; Salazar-Sánchez, R.; Castillo-Neyra, R.; Borrini-Mayorí, K.; Chipana-Ramos, C.; Vargas-Maquera, M.; Ancca-Juarez, J.; Náquira-Velarde, C.; Levy, M.Z.; Brisson, D.; et al. Sexual Reproduction in a Natural Trypanosoma cruzi Population. PLoS Negl. Trop. Dis. 2019, 13, e0007392. [Google Scholar] [CrossRef] [PubMed]
- Gaunt, M.W.; Yeo, M.; Frame, I.A.; Stothard, J.R.; Carrasco, H.J.; Taylor, M.C.; Mena, S.S.; Veazey, P.; Miles, G.A.J.; Acosta, N.; et al. Mechanism of Genetic Exchange in American Trypanosomes. Nature 2003, 421, 936–939. [Google Scholar] [CrossRef]
- de Paula Baptista, R.; D’Ávila, D.A.; Segatto, M.; do Valle, Í.F.; Franco, G.R.; Valadares, H.M.; Gontijo, E.D.; da Cunha Galvão, L.M.; Pena, S.D.; Chiari, E.; et al. Evidence of Substantial Recombination among Trypanosoma cruzi II Strains from Minas Gerais. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2014, 22, 183–191. [Google Scholar] [CrossRef]
- Minning, T.A.; Weatherly, D.B.; Flibotte, S.; Tarleton, R.L. Widespread, Focal Copy Number Variations (CNV) and Whole Chromosome Aneuploidies in Trypanosoma cruzi Strains Revealed by Array Comparative Genomic Hybridization. BMC Genom. 2011, 12, 139. [Google Scholar] [CrossRef] [PubMed]
- Messenger, L.A.; Miles, M.A. Evidence and Importance of Genetic Exchange among Field Populations of Trypanosoma cruzi. Acta Trop. 2015, 151, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Tibayrenc, M.; Ayala, F.J. Reproductive Clonality of Pathogens: A Perspective on Pathogenic Viruses, Bacteria, Fungi, and Parasitic Protozoa. Proc. Natl. Acad. Sci. USA 2012, 109, E3305–E3313. [Google Scholar] [CrossRef]
- Tibayrenc, M.; Ayala, F.J. The Population Genetics of Trypanosoma cruzi Revisited in the Light of the Predominant Clonal Evolution Model. Acta Trop. 2015, 151, 156. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.D.; Llewellyn, M.S. Reproductive Clonality in Protozoan Pathogens—Truth or Artefact? Mol. Ecol. 2014, 23, 4195–4202. [Google Scholar] [CrossRef] [PubMed]
- Zingales, B.; Macedo, A.M. Fifteen Years after the Definition of Trypanosoma cruzi DTUs: What Have We Learned? Life 2023, 13, 2339. [Google Scholar] [CrossRef]
- Machado, C.A.; Ayala, F.J. Nucleotide Sequences Provide Evidence of Genetic Exchange among Distantly Related Lineages of Trypanosoma cruzi. Proc. Natl. Acad. Sci. USA 2001, 98, 7396. [Google Scholar] [CrossRef] [PubMed]
- Reis-Cunha, J.L.; Rodrigues-Luiz, G.F.; Valdivia, H.O.; Baptista, R.P.; Mendes, T.A.O.; de Morais, G.L.; Guedes, R.; Macedo, A.M.; Bern, C.; Gilman, R.H.; et al. Chromosomal Copy Number Variation Reveals Differential Levels of Genomic Plasticity in Distinct Trypanosoma cruzi Strains. BMC Genom. 2015, 16, 499. [Google Scholar] [CrossRef]
- Souza, R.T.; Lima, F.M.; Barros, R.M.; Cortez, D.R.; Santos, M.F.; Cordero, E.M.; Ruiz, J.C.; Goldenberg, S.; Teixeira, M.M.G.; da Silveira, J.F. Genome Size, Karyotype Polymorphism and Chromosomal Evolution in Trypanosoma cruzi. PLoS ONE 2011, 6, e23042. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, J.; Dujardin, J.C.; Barnabé, C.; Brisse, S.; Timperman, G.; Venegas, J.; Pettersson, U.; Tibayrenc, M.; Solari, A. Chromosomal Size Variation in Trypanosoma cruzi Is Mainly Progressive and Is Evolutionarily Informative. Parasitology 2002, 124, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Lukes, J.; Guilbride, D.L.; Votýpka, J.; Zíková, A.; Benne, R.; Englund, P.T. Kinetoplast DNA Network: Evolution of an Improbable Structure. Eukaryot. Cell 2002, 1, 495–502. [Google Scholar] [CrossRef]
- Thomas, S.; Martinez, L.I.T.; Westenberger, S.J.; Sturm, N.R. A Population Study of the Minicircles in Trypanosoma cruzi: Predicting Guide RNAs in the Absence of Empirical RNA Editing. BMC Genom. 2007, 8, 133. [Google Scholar] [CrossRef]
- Gerasimov, E.S.; Zamyatnina, K.A.; Matveeva, N.S.; Rudenskaya, Y.A.; Kraeva, N.; Kolesnikov, A.A.; Yurchenko, V. Common Structural Patterns in the Maxicircle Divergent Region of Trypanosomatidae. Pathogens 2020, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Aphasizhev, R.; Aphasizheva, I. Mitochondrial RNA Editing in Trypanosomes: Small RNAs in Control. Biochimie 2014, 100, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Brenière, S.F.; Waleckx, E.; Barnabé, C. Over Six Thousand Trypanosoma cruzi Strains Classified into Discrete Typing Units (DTUs): Attempt at an Inventory. PLoS Negl. Trop. Dis. 2016, 10, e0004792. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.D.; Llewellyn, M.S.; Gaunt, M.W.; Yeo, M.; Carrasco, H.J.; Miles, M.A. Flow Cytometric Analysis and Microsatellite Genotyping Reveal Extensive DNA Content Variation in Trypanosoma cruzi Populations and Expose Contrasts between Natural and Experimental Hybrids. Int. J. Parasitol. 2009, 39, 1305–1317. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, J.A.; Hall, T.E.; Crane, M.S.; Engel, J.C.; McDaniel, J.P.; Uriegas, R. Trypanosoma cruzi: Flow Cytometric Analysis. I. Analysis of Total DNA/Organism by Means of Mithramycin-Induced Fluorescence. J. Protozool. 1982, 29, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Zingales, B.; Bartholomeu, D.C. Trypanosoma cruzi Genetic Diversity: Impact on Transmission Cycles and Chagas Disease. Mem. Inst. Oswaldo Cruz 2022, 117, e210193. [Google Scholar] [CrossRef] [PubMed]
- Zingales, B. Trypanosoma cruzi Genetic Diversity: Something New for Something Known about Chagas Disease Manifestations, Serodiagnosis and Drug Sensitivity. Acta Trop. 2018, 184, 38–52. [Google Scholar] [CrossRef]
- Miles, M.A.; Llewellyn, M.S.; Lewis, M.D.; Yeo, M.; Baleela, R.; Fitzpatrick, S.; Gaunt, M.W.; Mauricio, I.L. The Molecular Epidemiology and Phylogeography of Trypanosoma cruzi and Parallel Research on Leishmania: Looking Back and to the Future. Parasitology 2009, 136, 1509–1528. [Google Scholar] [CrossRef] [PubMed]
- Souto, R.P.; Fernandes, O.; Macedo, A.M.; Campbell, D.A.; Zingales, B. DNA Markers Define Two Major Phylogenetic Lineages of Trypanosoma cruzi. Mol. Biochem. Parasitol. 1996, 83, 141–152. [Google Scholar] [CrossRef]
- Tibayrenc, M.; Neubauer, K.; Barnabé, C.; Guerrini, F.; Skarecky, D.; Ayala, F.J. Genetic Characterization of Six Parasitic Protozoa: Parity between Random-Primer DNA Typing and Multilocus Enzyme Electrophoresis. Proc. Natl. Acad. Sci. USA 1993, 90, 1335–1339. [Google Scholar] [CrossRef]
- Robello, C.; Gamarro, F.; Castanys, S.; Alvarez-Valin, F. Evolutionary Relationships in Trypanosoma cruzi: Molecular Phylogenetics Supports the Existence of a New Major Lineage of Strains. Gene 2000, 246, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Brisse, S.; Barnabé, C.; Tibayrenc, M. Identification of Six Trypanosoma cruzi Phylogenetic Lineages by Random Amplified Polymorphic DNA and Multilocus Enzyme Electrophoresis. Int. J. Parasitol. 2000, 30, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Zingales, B.; Miles, M.A.; Campbell, D.A.; Tibayrenc, M.; Macedo, A.M.; Teixeira, M.M.G.; Schijman, A.G.; Llewellyn, M.S.; Lages-Silva, E.; Machado, C.R.; et al. The Revised Trypanosoma cruzi Subspecific Nomenclature: Rationale, Epidemiological Relevance and Research Applications. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2012, 12, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Zingales, B.; Andrade, S.G.; Briones, M.R.S.; Campbell, D.A.; Chiari, E.; Fernandes, O.; Guhl, F.; Lages-Silva, E.; Macedo, A.M.; Machado, C.R.; et al. A New Consensus for Trypanosoma cruzi Intraspecific Nomenclature: Second Revision Meeting Recommends TcI to TcVI. Mem. Inst. Oswaldo Cruz 2009, 104, 1051–1054. [Google Scholar] [CrossRef]
- Tibayrenc, M. Genetic Epidemiology of Parasitic Protozoa and Other Infectious Agents: The Need for an Integrated Approach. Int. J. Parasitol. 1998, 28, 85–104. [Google Scholar] [CrossRef]
- Lima, L.; Espinosa-Álvarez, O.; Ortiz, P.A.; Trejo-Varón, J.A.; Carranza, J.C.; Pinto, C.M.; Serrano, M.G.; Buck, G.A.; Camargo, E.P.; Teixeira, M.M.G. Genetic Diversity of Trypanosoma cruzi in Bats, and Multilocus Phylogenetic and Phylogeographical Analyses Supporting Tcbat as an Independent DTU (Discrete Typing Unit). Acta Trop. 2015, 151, 166–177. [Google Scholar] [CrossRef]
- Flores-López, C.A.; Mitchell, E.A.; Reisenman, C.E.; Sarkar, S.; Williamson, P.C.; Machado, C.A. Phylogenetic Diversity of Two Common Trypanosoma cruzi Lineages in the Southwestern United States. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2022, 99, 105251. [Google Scholar] [CrossRef]
- Barnabé, C.; Mobarec, H.I.; Jurado, M.R.; Cortez, J.A.; Brenière, S.F. Reconsideration of the Seven Discrete Typing Units within the Species Trypanosoma cruzi, a New Proposal of Three Reliable Mitochondrial Clades. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2016, 39, 176–186. [Google Scholar] [CrossRef]
- Berná, L.; Greif, G.; Pita, S.; Faral-Tello, P.; Díaz-Viraqué, F.; Souza, R.D.C.M.D.; Vallejo, G.A.; Alvarez-Valin, F.; Robello, C. Maxicircle Architecture and Evolutionary Insights into Trypanosoma cruzi Complex. PLoS Negl. Trop. Dis. 2021, 15, e0009719. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, N.M.; Myler, P.J.; Bartholomeu, D.C.; Nilsson, D.; Aggarwal, G.; Tran, A.-N.; Ghedin, E.; Worthey, E.A.; Delcher, A.L.; Blandin, G.; et al. The Genome Sequence of Trypanosoma cruzi, Etiologic Agent of Chagas Disease. Science 2005, 309, 409–415. [Google Scholar] [CrossRef]
- Reis-Cunha, J.L.; Bartholomeu, D.C. Trypanosoma cruzi Genome Assemblies: Challenges and Milestones of Assembling a Highly Repetitive and Complex Genome. Methods Mol. Biol. 2019, 1955, 1–22. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, N.M.; Myler, P.J.; Blandin, G.; Berriman, M.; Crabtree, J.; Aggarwal, G.; Caler, E.; Renauld, H.; Worthey, E.A.; Hertz-Fowler, C.; et al. Comparative Genomics of Trypanosomatid Parasitic Protozoa. Science 2005, 309, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Franzén, O.; Ochaya, S.; Sherwood, E.; Lewis, M.D.; Llewellyn, M.S.; Miles, M.A.; Andersson, B. Shotgun Sequencing Analysis of Trypanosoma cruzi I Sylvio X10/1 and Comparison with T. Cruzi VI CL Brener. PLoS Negl. Trop. Dis. 2011, 5, e984. [Google Scholar] [CrossRef] [PubMed]
- Grisard, E.C.; Teixeira, S.M.R.; de Almeida, L.G.P.; Stoco, P.H.; Gerber, A.L.; Talavera-López, C.; Lima, O.C.; Andersson, B.; de Vasconcelos, A.T.R. Trypanosoma cruzi Clone Dm28c Draft Genome Sequence. Genome Announc. 2014, 2, e01114. [Google Scholar] [CrossRef]
- Callejas-Hernández, F.; Rastrojo, A.; Poveda, C.; Gironès, N.; Fresno, M. Genomic Assemblies of Newly Sequenced Trypanosoma cruzi Strains Reveal New Genomic Expansion and Greater Complexity. Sci. Rep. 2018, 8, 14631. [Google Scholar] [CrossRef]
- Baptista, R.P.; Reis-Cunha, J.L.; DeBarry, J.D.; Chiari, E.; Kissinger, J.C.; Bartholomeu, D.C.; Macedo, A.M. Assembly of Highly Repetitive Genomes Using Short Reads: The Genome of Discrete Typing Unit III Trypanosoma cruzi Strain 231. Microb. Genom. 2018, 4, e000156. [Google Scholar] [CrossRef] [PubMed]
- Bradwell, K.R.; Koparde, V.N.; Matveyev, A.V.; Serrano, M.G.; Alves, J.M.P.; Parikh, H.; Huang, B.; Lee, V.; Espinosa-Alvarez, O.; Ortiz, P.A.; et al. Genomic Comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi Strains of High and Low Virulence. BMC Genom. 2018, 19, 770. [Google Scholar] [CrossRef] [PubMed]
- DeCuir, J.; Tu, W.; Dumonteil, E.; Herrera, C. Sequence of Trypanosoma cruzi Reference Strain SC43 Nuclear Genome and Kinetoplast Maxicircle Confirms a Strong Genetic Structure among Closely Related Parasite Discrete Typing Units. Genome 2020, 64, 525. [Google Scholar] [CrossRef]
- Franzén, O.; Talavera-López, C.; Ochaya, S.; Butler, C.E.; Messenger, L.A.; Lewis, M.D.; Llewellyn, M.S.; Marinkelle, C.J.; Tyler, K.M.; Miles, M.A.; et al. Comparative Genomic Analysis of Human Infective Trypanosoma cruzi Lineages with the Bat-Restricted Subspecies T. cruzi marinkellei. BMC Genom. 2012, 13, 531. [Google Scholar] [CrossRef] [PubMed]
- Gómez, I.; López, M.C.; Rastrojo, A.; Lorenzo-Díaz, F.; Requena, J.M.; Aguado, B.; Valladares, B.; Thomas, M.C. Variability of the Pr77 Sequence of L1Tc Retrotransposon among Six T. cruzi Strains Belonging to Different Discrete Typing Units (DTUs). Acta Trop. 2021, 222, 106053. [Google Scholar] [CrossRef] [PubMed]
- Reis-Cunha, J.L.; Baptista, R.P.; Rodrigues-Luiz, G.F.; Coqueiro-dos-Santos, A.; Valdivia, H.O.; de Almeida, L.V.; Cardoso, M.S.; D’Ávila, D.A.; Dias, F.H.C.; Fujiwara, R.T.; et al. Whole Genome Sequencing of Trypanosoma cruzi Field Isolates Reveals Extensive Genomic Variability and Complex Aneuploidy Patterns within TcII DTU. BMC Genom. 2018, 19, 816. [Google Scholar] [CrossRef] [PubMed]
- Camacho, E.; González-de la Fuente, S.; Rastrojo, A.; Peiró-Pastor, R.; Solana, J.C.; Tabera, L.; Gamarro, F.; Carrasco-Ramiro, F.; Requena, J.M.; Aguado, B. Complete Assembly of the Leishmania Donovani (HU3 Strain) Genome and Transcriptome Annotation. Sci. Rep. 2019, 9, 6127. [Google Scholar] [CrossRef]
- Berná, L.; Rodriguez, M.; Chiribao, M.L.; Parodi-Talice, A.; Pita, S.; Rijo, G.; Alvarez-Valin, F.; Robello, C. Expanding an Expanded Genome: Long-Read Sequencing of Trypanosoma cruzi. Microb. Genom. 2018, 4, e000177. [Google Scholar] [CrossRef] [PubMed]
- Hakim, J.M.C.; Gutierrez Guarnizo, S.A.; Málaga Machaca, E.; Gilman, R.H.; Mugnier, M.R. Whole-Genome Assembly of a Hybrid Trypanosoma cruzi Strain Assembled with Nanopore Sequencing Alone. G3 Genes Genomes Genet. 2024, 14, jkae076. [Google Scholar] [CrossRef]
- Hoyos Sanchez, M.C.; Ospina Zapata, H.S.; Suarez, B.D.; Ospina, C.; Barbosa, H.J.; Carranza Martinez, J.C.; Vallejo, G.A.; Urrea Montes, D.; Duitama, J. A Phased Genome Assembly of a Colombian Trypanosoma cruzi TcI Strain and the Evolution of Gene Families. Sci. Rep. 2024, 14, 2054. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Viraqué, F.; Pita, S.; Greif, G.; de Souza, R.d.C.M.; Iraola, G.; Robello, C. Nanopore Sequencing Significantly Improves Genome Assembly of the Protozoan Parasite Trypanosoma cruzi. Genome Biol. Evol. 2019, 11, 1952–1957. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Peng, D.; Baptista, R.P.; Li, Y.; Kissinger, J.C.; Tarleton, R.L. Strain-Specific Genome Evolution in Trypanosoma cruzi, the Agent of Chagas Disease. PLoS Pathog. 2021, 17, e1009254. [Google Scholar] [CrossRef] [PubMed]
- Fesser, A.; Beilstein, S.; Kaiser, M.; Schmidt, R.S.; Mäser, P. Trypanosoma cruzi STIB980: A TcI Strain for Drug Discovery and Reverse Genetics. Pathogens 2023, 12, 1217. [Google Scholar] [CrossRef] [PubMed]
- Majeau, A.; Murphy, L.; Herrera, C.; Dumonteil, E. Assessing Trypanosoma cruzi Parasite Diversity through Comparative Genomics: Implications for Disease Epidemiology and Diagnostics. Pathogens 2021, 10, 212. [Google Scholar] [CrossRef] [PubMed]
- Callejas-Hernández, F.; Gutierrez-Nogues, Á.; Rastrojo, A.; Gironès, N.; Fresno, M. Analysis of mRNA Processing at Whole Transcriptome Level, Transcriptomic Profile and Genome Sequence Refinement of Trypanosoma cruzi. Sci. Rep. 2019, 9, 17376. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, J.; Aslund, L.; Pettersson, U. Karyotype Variability in Trypanosoma cruzi. Parasitol. Today 1996, 12, 108–114. [Google Scholar] [CrossRef]
- Santos, M.R.; Cano, M.I.; Schijman, A.; Lorenzi, H.; Vázquez, M.; Levin, M.J.; Ramirez, J.L.; Brandão, A.; Degrave, W.M.; da Silveira, J.F. The Trypanosoma cruzi Genome Project: Nuclear Karyotype and Gene Mapping of Clone CL Brener. Mem. Inst. Oswaldo Cruz 1997, 92, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, J.; Porcel, B.; Rydåker, M.; Ruiz, A.; Sabaj, V.; Galanti, N.; Cazzulo, J.J.; Frasch, A.C.; Pettersson, U. Chromosome Specific Markers Reveal Conserved Linkage Groups in Spite of Extensive Chromosomal Size Variation in Trypanosoma cruzi. Mol. Biochem. Parasitol. 1995, 73, 63–74. [Google Scholar] [CrossRef]
- Vargas, N.; Pedroso, A.; Zingales, B. Chromosomal Polymorphism, Gene Synteny and Genome Size in T. cruzi I and T. cruzi II Groups. Mol. Biochem. Parasitol. 2004, 138, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Weatherly, D.B.; Boehlke, C.; Tarleton, R.L. Chromosome Level Assembly of the Hybrid Trypanosoma cruzi Genome. BMC Genom. 2009, 10, 255. [Google Scholar] [CrossRef]
- Parmar, J.J.; Woringer, M.; Zimmer, C. How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization. Annu. Rev. Biophys. 2019, 48, 231–253. [Google Scholar] [CrossRef] [PubMed]
- Downing, T.; Imamura, H.; Decuypere, S.; Clark, T.G.; Coombs, G.H.; Cotton, J.A.; Hilley, J.D.; de Doncker, S.; Maes, I.; Mottram, J.C.; et al. Whole Genome Sequencing of Multiple Leishmania Donovani Clinical Isolates Provides Insights into Population Structure and Mechanisms of Drug Resistance. Genome Res. 2011, 21, 2143–2156. [Google Scholar] [CrossRef]
- Dujardin, J.-C.; Mannaert, A.; Durrant, C.; Cotton, J.A. Mosaic Aneuploidy in Leishmania: The Perspective of Whole Genome Sequencing. Trends Parasitol. 2014, 30, 554–555. [Google Scholar] [CrossRef] [PubMed]
- Mannaert, A.; Downing, T.; Imamura, H.; Dujardin, J.-C. Adaptive Mechanisms in Pathogens: Universal Aneuploidy in Leishmania. Trends Parasitol. 2012, 28, 370–376. [Google Scholar] [CrossRef]
- Almeida, L.V.; Coqueiro-Dos-Santos, A.; Rodriguez-Luiz, G.F.; McCulloch, R.; Bartholomeu, D.C.; Reis-Cunha, J.L. Chromosomal Copy Number Variation Analysis by next Generation Sequencing Confirms Ploidy Stability in Trypanosoma brucei Subspecies. Microb. Genom. 2018, 4, e000223. [Google Scholar] [CrossRef] [PubMed]
- Reis-Cunha, J.L.; Valdivia, H.O.; Bartholomeu, D.C. Gene and Chromosomal Copy Number Variations as an Adaptive Mechanism Towards a Parasitic Lifestyle in Trypanosomatids. Curr. Genom. 2018, 19, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.L. An Evolutionary View of Trypanosoma cruzi Telomeres. Front. Cell. Infect. Microbiol. 2019, 9, 439. [Google Scholar] [CrossRef]
- Kim, D.; Chiurillo, M.A.; El-Sayed, N.; Jones, K.; Santos, M.R.M.; Porcile, P.E.; Andersson, B.; Myler, P.; da Silveira, J.F.; Ramírez, J.L. Telomere and Subtelomere of Trypanosoma cruzi Chromosomes Are Enriched in (Pseudo) Genes of Retrotransposon Hot Spot and Trans-Sialidase-like Gene Families: The Origins of T. cruzi Telomeres. Gene 2005, 346, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Azuaje, F.J.; Ramirez, J.L.; Da Silveira, J.F. In Silico, Biologically-Inspired Modelling of Genomic Variation Generation in Surface Proteins of Trypanosoma cruzi. Kinetoplastid Biol. Dis. 2007, 6, 6. [Google Scholar] [CrossRef]
- Dreesen, O.; Li, B.; Cross, G.A.M. Telomere Structure and Function in Trypanosomes: A Proposal. Nat. Rev. Microbiol. 2007, 5, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Berná, L.; Pita, S.; Chiribao, M.L.; Parodi-Talice, A.; Alvarez-Valin, F.; Robello, C. Biology of the Trypanosoma cruzi Genome. In Biology of Trypanosoma cruzi; IntechOpen: London, UK, 2019; ISBN 978-1-83968-204-9. [Google Scholar]
- Herreros-Cabello, A.; Callejas-Hernández, F.; Gironès, N.; Fresno, M. Trypanosoma cruzi Genome: Organization, Multi-Gene Families, Transcription, and Biological Implications. Genes 2020, 11, 1196. [Google Scholar] [CrossRef] [PubMed]
- Atwood, J.A.; Weatherly, D.B.; Minning, T.A.; Bundy, B.; Cavola, C.; Opperdoes, F.R.; Orlando, R.; Tarleton, R.L. The Trypanosoma cruzi Proteome. Science 2005, 309, 473–476. [Google Scholar] [CrossRef]
- Herreros-Cabello, A.; Callejas-Hernández, F.; Fresno, M.; Gironès, N. Comparative Proteomic Analysis of Trypomastigotes from Trypanosoma cruzi Strains with Different Pathogenicity. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2019, 76, 104041. [Google Scholar] [CrossRef] [PubMed]
- Avila, C.C.; Mule, S.N.; Rosa-Fernandes, L.; Viner, R.; Barisón, M.J.; Costa-Martins, A.G.; de Oliveira, G.S.; Teixeira, M.M.G.; Marinho, C.R.F.; Silber, A.M.; et al. Proteome-Wide Analysis of Trypanosoma cruzi Exponential and Stationary Growth Phases Reveals a Subcellular Compartment-Specific Regulation. Genes 2018, 9, 413. [Google Scholar] [CrossRef] [PubMed]
- de Godoy, L.M.F.; Marchini, F.K.; Pavoni, D.P.; Rampazzo, R.d.C.P.; Probst, C.M.; Goldenberg, S.; Krieger, M.A. Quantitative Proteomics of Trypanosoma cruzi during Metacyclogenesis. Proteomics 2012, 12, 2694–2703. [Google Scholar] [CrossRef] [PubMed]
- Kudla, G.; Helwak, A.; Lipinski, L. Gene Conversion and GC-Content Evolution in Mammalian Hsp70. Mol. Biol. Evol. 2004, 21, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Galtier, N. Gene Conversion Drives GC Content Evolution in Mammalian Histones. Trends Genet. TIG 2003, 19, 65–68. [Google Scholar] [CrossRef]
- Chiurillo, M.A.; Cano, I.; Da Silveira, J.F.; Ramirez, J.L. Organization of Telomeric and Sub-Telomeric Regions of Chromosomes from the Protozoan Parasite Trypanosoma cruzi. Mol. Biochem. Parasitol. 1999, 100, 173–183. [Google Scholar] [CrossRef]
- Moraes Barros, R.R.; Marini, M.M.; Antônio, C.R.; Cortez, D.R.; Miyake, A.M.; Lima, F.M.; Ruiz, J.C.; Bartholomeu, D.C.; Chiurillo, M.A.; Ramirez, J.L.; et al. Anatomy and Evolution of Telomeric and Subtelomeric Regions in the Human Protozoan Parasite Trypanosoma cruzi. BMC Genom. 2012, 13, 229. [Google Scholar] [CrossRef]
- de Araujo, C.B.; da Cunha, J.P.C.; Inada, D.T.; Damasceno, J.; Lima, A.R.J.; Hiraiwa, P.; Marques, C.; Gonçalves, E.; Nishiyama-Junior, M.Y.; McCulloch, R.; et al. Replication Origin Location Might Contribute to Genetic Variability in Trypanosoma cruzi. BMC Genom. 2020, 21, 414. [Google Scholar] [CrossRef]
- de Araujo, C.B.; Calderano, S.G.; Elias, M.C. The Dynamics of Replication in Trypanosoma cruzi Parasites by Single-Molecule Analysis. J. Eukaryot. Microbiol. 2019, 66, 514–518. [Google Scholar] [CrossRef]
- Gonçalves, C.S.; Ávila, A.R.; de Souza, W.; Motta, M.C.M.; Cavalcanti, D.P. Revisiting the Trypanosoma cruzi Metacyclogenesis: Morphological and Ultrastructural Analyses during Cell Differentiation. Parasit. Vectors 2018, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Elias, M.C.; Marques-Porto, R.; Freymüller, E.; Schenkman, S. Transcription Rate Modulation through the Trypanosoma cruzi Life Cycle Occurs in Parallel with Changes in Nuclear Organisation. Mol. Biochem. Parasitol. 2001, 112, 79–90. [Google Scholar] [CrossRef]
- Ferreira, L.R.P.; Dossin, F.d.M.; Ramos, T.C.; Freymüller, E.; Schenkman, S. Active Transcription and Ultrastructural Changes during Trypanosoma cruzi Metacyclogenesis. An. Acad. Bras. Cienc. 2008, 80, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.R.J.; Silva, H.G.d.S.; Poubel, S.; Rosón, J.N.; de Lima, L.P.O.; Costa-Silva, H.M.; Gonçalves, C.S.; Galante, P.A.F.; Holetz, F.; Motta, M.C.M.M.; et al. Open Chromatin Analysis in Trypanosoma cruzi Life Forms Highlights Critical Differences in Genomic Compartments and Developmental Regulation at tDNA Loci. Epigenetics Chromatin 2022, 15, 22. [Google Scholar] [CrossRef]
- Díaz-Viraqué, F.; Chiribao, M.L.; Libisch, M.G.; Robello, C. Genome-Wide Chromatin Interaction Map for Trypanosoma cruzi. Nat. Microbiol. 2023, 8, 2103. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.R.; Tschudi, C.; Ullu, E. A Common Pyrimidine-Rich Motif Governs Trans-Splicing and Polyadenylation of Tubulin Polycistronic Pre-mRNA in Trypanosomes. Genes Dev. 1994, 8, 491–501. [Google Scholar] [CrossRef]
- Chávez, S.; Urbaniak, M.D.; Benz, C.; Smircich, P.; Garat, B.; Sotelo-Silveira, J.R.; Duhagon, M.A. Extensive Translational Regulation through the Proliferative Transition of Trypanosoma cruzi Revealed by Multi-Omics. mSphere 2021, 6, e0036621. [Google Scholar] [CrossRef] [PubMed]
- Araújo, P.R.; Teixeira, S.M. Regulatory Elements Involved in the Post-Transcriptional Control of Stage-Specific Gene Expression in Trypanosoma cruzi: A Review. Mem. Inst. Oswaldo Cruz 2011, 106, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.R.J.; de Araujo, C.B.; Bispo, S.; Patané, J.; Silber, A.M.; Elias, M.C.; da Cunha, J.P.C. Nucleosome Landscape Reflects Phenotypic Differences in Trypanosoma cruzi Life Forms. PLoS Pathog. 2021, 17, e1009272. [Google Scholar] [CrossRef] [PubMed]
- Rosón, J.N.; Vitarelli, M.d.O.; Costa-Silva, H.M.; Pereira, K.S.; Pires, D.d.S.; Lopes, L.d.S.; Cordeiro, B.; Kraus, A.J.; Cruz, K.N.T.; Calderano, S.G.; et al. H2B.V Demarcates Divergent Strand-Switch Regions, Some tDNA Loci, and Genome Compartments in Trypanosoma cruzi and Affects Parasite Differentiation and Host Cell Invasion. PLoS Pathog. 2022, 18, e1009694. [Google Scholar] [CrossRef]
- Nunes, V.S.; Moretti, N.S.; da Silva, M.S.; Elias, M.C.; Janzen, C.J.; Schenkman, S. Trimethylation of Histone H3K76 by Dot1B Enhances Cell Cycle Progression after Mitosis in Trypanosoma cruzi. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118694. [Google Scholar] [CrossRef]
- Martínez-Calvillo, S.; Vizuet-de-Rueda, J.C.; Florencio-Martínez, L.E.; Manning-Cela, R.G.; Figueroa-Angulo, E.E. Gene Expression in Trypanosomatid Parasites. J. Biomed. Biotechnol. 2010, 2010, 525241. [Google Scholar] [CrossRef]
- Obado, S.O.; Bot, C.; Nilsson, D.; Andersson, B.; Kelly, J.M. Repetitive DNA Is Associated with Centromeric Domains in Trypanosoma brucei but Not Trypanosoma cruzi. Genome Biol. 2007, 8, R37. [Google Scholar] [CrossRef] [PubMed]
- Obado, S.O.; Taylor, M.C.; Wilkinson, S.R.; Bromley, E.V.; Kelly, J.M. Functional Mapping of a Trypanosome Centromere by Chromosome Fragmentation Identifies a 16-Kb GC-Rich Transcriptional “Strand-Switch” Domain as a Major Feature. Genome Res. 2005, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Smircich, P.; El-Sayed, N.M.; Garat, B. Intrinsic DNA Curvature in Trypanosomes. BMC Res. Notes 2017, 10, 585. [Google Scholar] [CrossRef] [PubMed]
- Günzl, A. The Pre-mRNA Splicing Machinery of Trypanosomes: Complex or Simplified? Eukaryot. Cell 2010, 9, 1159. [Google Scholar] [CrossRef] [PubMed]
- De Gaudenzi, J.G.; Noé, G.; Campo, V.A.; Frasch, A.C.; Cassola, A. Gene Expression Regulation in Trypanosomatids. Essays Biochem. 2011, 51, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Rastrojo, A.; Carrasco-Ramiro, F.; Martín, D.; Crespillo, A.; Reguera, R.M.; Aguado, B.; Requena, J.M. The Transcriptome of Leishmania Major in the Axenic Promastigote Stage: Transcript Annotation and Relative Expression Levels by RNA-Seq. BMC Genom. 2013, 14, 223. [Google Scholar] [CrossRef] [PubMed]
- Kolev, N.G.; Franklin, J.B.; Carmi, S.; Shi, H.; Michaeli, S.; Tschudi, C. The Transcriptome of the Human Pathogen Trypanosoma Brucei at Single-Nucleotide Resolution. PLoS Pathog. 2010, 6, e1001090. [Google Scholar] [CrossRef] [PubMed]
- Pech-Canul, Á.d.l.C.; Monteón, V.; Solís-Oviedo, R.-L. A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. J. Parasitol. Res. 2017, 2017, 3751403. [Google Scholar] [CrossRef]
- Santi-Rocca, J.; Fernandez-Cortes, F.; Chillón-Marinas, C.; González-Rubio, M.-L.; Martin, D.; Gironès, N.; Fresno, M. A Multi-Parametric Analysis of Trypanosoma cruzi Infection: Common Pathophysiologic Patterns beyond Extreme Heterogeneity of Host Responses. Sci. Rep. 2017, 7, 8893. [Google Scholar] [CrossRef] [PubMed]
- Poveda, C.; Herreros-Cabello, A.; Callejas-Hernández, F.; Osuna-Pérez, J.; Maza, M.C.; Chillón-Marinas, C.; Calderón, J.; Stamatakis, K.; Fresno, M.; Gironès, N. Interaction of Signaling Lymphocytic Activation Molecule Family 1 (SLAMF1) Receptor with Trypanosoma cruzi Is Strain-Dependent and Affects NADPH Oxidase Expression and Activity. PLoS Negl. Trop. Dis. 2020, 14, e0008608. [Google Scholar] [CrossRef]
- De Pablos, L.M.; Osuna, A. Multigene Families in Trypanosoma cruzi and Their Role in Infectivity. Infect. Immun. 2012, 80, 2258–2264. [Google Scholar] [CrossRef] [PubMed]
- Chiurillo, M.A.; Cortez, D.R.; Lima, F.M.; Cortez, C.; Ramírez, J.L.; Martins, A.G.; Serrano, M.G.; Teixeira, M.M.G.; da Silveira, J.F. The Diversity and Expansion of the Trans-Sialidase Gene Family Is a Common Feature in Trypanosoma cruzi Clade Members. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2016, 37, 266–274. [Google Scholar] [CrossRef]
- Lantos, A.B.; Carlevaro, G.; Araoz, B.; Ruiz Diaz, P.; Camara, M.d.l.M.; Buscaglia, C.A.; Bossi, M.; Yu, H.; Chen, X.; Bertozzi, C.R.; et al. Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology. PLoS Pathog. 2016, 12, e1005559. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, K.S.; Vasconcellos, C.I.; Soares, R.P.; Mendes, M.T.; Ellis, C.C.; Aguilera-Flores, M.; de Almeida, I.C.; Schenkman, S.; Iwai, L.K.; Torrecilhas, A.C. Proteomic Analysis Reveals Different Composition of Extracellular Vesicles Released by Two Trypanosoma cruzi Strains Associated with Their Distinct Interaction with Host Cells. J. Extracell. Vesicles 2018, 7, 1463779. [Google Scholar] [CrossRef] [PubMed]
- Schenkman, S.; Eichinger, D.; Pereira, M.E.; Nussenzweig, V. Structural and Functional Properties of Trypanosoma Trans-Sialidase. Annu. Rev. Microbiol. 1994, 48, 499–523. [Google Scholar] [CrossRef] [PubMed]
- Frasch, A.C. Functional Diversity in the Trans-Sialidase and Mucin Families in Trypanosoma cruzi. Parasitol. Today 2000, 16, 282–286. [Google Scholar] [CrossRef]
- Pereira, M.E.A.; Loures, M.A.; Villalta, F.; Andrade, A.F.B. Lectin Receptors as Markers for Trypanosoma cruzi. Developmental Stages and a Study of the Interaction of Wheat Germ Agglutinin with Sialic Acid Residues on Epimastigote Cells. J. Exp. Med. 1980, 152, 1375–1392. [Google Scholar] [CrossRef]
- Pereira-Chioccola, V.L.; Acosta-Serrano, A.; Correia de Almeida, I.; Ferguson, M.A.; Souto-Padron, T.; Rodrigues, M.M.; Travassos, L.R.; Schenkman, S. Mucin-like Molecules Form a Negatively Charged Coat That Protects Trypanosoma cruzi Trypomastigotes from Killing by Human Anti-Alpha-Galactosyl Antibodies. J. Cell Sci. 2000, 113 Pt 7, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Nardy, A.F.F.R.; Freire-de-Lima, C.G.; Pérez, A.R.; Morrot, A. Role of Trypanosoma cruzi Trans-Sialidase on the Escape from Host Immune Surveillance. Front. Microbiol. 2016, 7, 348. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.E. A Developmentally Regulated Neuraminidase Activity in Trypanosoma cruzi. Science 1983, 219, 1444–1446. [Google Scholar] [CrossRef] [PubMed]
- Freitas, L.M.; dos Santos, S.L.; Rodrigues-Luiz, G.F.; Mendes, T.A.O.; Rodrigues, T.S.; Gazzinelli, R.T.; Teixeira, S.M.R.; Fujiwara, R.T.; Bartholomeu, D.C. Genomic Analyses, Gene Expression and Antigenic Profile of the Trans-Sialidase Superfamily of Trypanosoma cruzi Reveal an Undetected Level of Complexity. PLoS ONE 2011, 6, e25914. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.A.; Freire-de-Lima, L.; Penha, L.L.; Dias, W.B.; Todeschini, A.R. Trypanosoma cruzi Trans-Sialidase: Structural Features and Biological Implications. Subcell. Biochem. 2014, 74, 181–201. [Google Scholar] [CrossRef] [PubMed]
- Bartholomeu, D.C.; Cerqueira, G.C.; Leão, A.C.A.; daRocha, W.D.; Pais, F.S.; Macedo, C.; Djikeng, A.; Teixeira, S.M.R.; El-Sayed, N.M. Genomic Organization and Expression Profile of the Mucin-Associated Surface Protein (Masp) Family of the Human Pathogen Trypanosoma cruzi. Nucleic Acids Res. 2009, 37, 3407. [Google Scholar] [CrossRef] [PubMed]
- Bayer-Santos, E.; Aguilar-Bonavides, C.; Rodrigues, S.P.; Cordero, E.M.; Marques, A.F.; Varela-Ramirez, A.; Choi, H.; Yoshida, N.; da Silveira, J.F.; Almeida, I.C. Proteomic Analysis of Trypanosoma cruzi Secretome: Characterization of Two Populations of Extracellular Vesicles and Soluble Proteins. J. Proteome Res. 2013, 12, 883–897. [Google Scholar] [CrossRef] [PubMed]
- Seco-Hidalgo, V.; De Pablos, L.M.; Osuna, A. Transcriptional and Phenotypical Heterogeneity of Trypanosoma cruzi Cell Populations. Open Biol. 2015, 5, 150190. [Google Scholar] [CrossRef]
- dos Santos, S.L.; Freitas, L.M.; Lobo, F.P.; Rodrigues-Luiz, G.F.; Mendes, T.A.d.O.; Oliveira, A.C.S.; Andrade, L.O.; Chiari, E.; Gazzinelli, R.T.; Teixeira, S.M.R.; et al. The MASP Family of Trypanosoma cruzi: Changes in Gene Expression and Antigenic Profile during the Acute Phase of Experimental Infection. PLoS Negl. Trop. Dis. 2012, 6, e1779. [Google Scholar] [CrossRef]
- Chuenkova, M.V.; PereiraPerrin, M. Chagas’ Disease Parasite Promotes Neuron Survival and Differentiation through TrkA Nerve Growth Factor Receptor. J. Neurochem. 2004, 91, 385–394. [Google Scholar] [CrossRef]
- Espinoza, B.; Martínez, I.; Martínez-Velasco, M.L.; Rodríguez-Sosa, M.; González-Canto, A.; Vázquez-Mendoza, A.; Terrazas, L.I. Role of a 49 kDa Trypanosoma cruzi Mucin-Associated Surface Protein (MASP49) during the Infection Process and Identification of a Mammalian Cell Surface Receptor. Pathogens 2023, 12, 105. [Google Scholar] [CrossRef] [PubMed]
- Leão, A.C.; Viana, L.A.; Fortes de Araujo, F.; de Lourdes Almeida, R.; Freitas, L.M.; Coqueiro-Dos-Santos, A.; da Silveira-Lemos, D.; Cardoso, M.S.; Reis-Cunha, J.L.; Teixeira-Carvalho, A.; et al. Antigenic Diversity of MASP Gene Family of Trypanosoma cruzi. Microbes Infect. 2022, 24, 104982. [Google Scholar] [CrossRef] [PubMed]
- Díaz Lozano, I.M.; De Pablos, L.M.; Longhi, S.A.; Zago, M.P.; Schijman, A.G.; Osuna, A. Immune Complexes in Chronic Chagas Disease Patients Are Formed by Exovesicles from Trypanosoma cruzi Carrying the Conserved MASP N-Terminal Region. Sci. Rep. 2017, 7, 44451. [Google Scholar] [CrossRef] [PubMed]
- De Pablos, L.M.; Díaz Lozano, I.M.; Jercic, M.I.; Quinzada, M.; Giménez, M.J.; Calabuig, E.; Espino, A.M.; Schijman, A.G.; Zulantay, I.; Apt, W.; et al. The C-Terminal Region of Trypanosoma cruzi MASPs Is Antigenic and Secreted via Exovesicles. Sci. Rep. 2016, 6, 27293. [Google Scholar] [CrossRef]
- Acosta-Serrano, A.; Almeida, I.C.; Freitas-Junior, L.H.; Yoshida, N.; Schenkman, S. The Mucin-like Glycoprotein Super-Family of Trypanosoma cruzi: Structure and Biological Roles. Mol. Biochem. Parasitol. 2001, 114, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Schenkman, S.; Ferguson, M.A.; Heise, N.; de Almeida, M.L.; Mortara, R.A.; Yoshida, N. Mucin-like Glycoproteins Linked to the Membrane by Glycosylphosphatidylinositol Anchor Are the Major Acceptors of Sialic Acid in a Reaction Catalyzed by Trans-Sialidase in Metacyclic Forms of Trypanosoma cruzi. Mol. Biochem. Parasitol. 1993, 59, 293–303. [Google Scholar] [CrossRef]
- Cánepa, G.E.; Mesías, A.C.; Yu, H.; Chen, X.; Buscaglia, C.A. Structural Features Affecting Trafficking, Processing, and Secretion of Trypanosoma cruzi Mucins. J. Biol. Chem. 2012, 287, 26365–26376. [Google Scholar] [CrossRef]
- Bunkofske, M.E.; Perumal, N.; White, B.; Strauch, E.-M.; Tarleton, R. Epitopes in the GPI Attachment Signal Peptide of Trypanosoma cruzi Mucin Proteins Generate Robust but Delayed and Nonprotective CD8+ T Cell Responses. J. Immunol. 2023, 210, 420. [Google Scholar] [CrossRef] [PubMed]
- Buscaglia, C.A.; Campo, V.A.; Frasch, A.C.C.; Di Noia, J.M. Trypanosoma cruzi Surface Mucins: Host-Dependent Coat Diversity. Nat. Rev. Microbiol. 2006, 4, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Mucci, J.; Lantos, A.B.; Buscaglia, C.A.; Leguizamón, M.S.; Campetella, O. The Trypanosoma cruzi Surface, a Nanoscale Patchwork Quilt. Trends Parasitol. 2016, 33, 102. [Google Scholar] [CrossRef]
- Campo, V.; Di Noia, J.M.; Buscaglia, C.A.; Agüero, F.; Sánchez, D.O.; Frasch, A.C.C. Differential Accumulation of Mutations Localized in Particular Domains of the Mucin Genes Expressed in the Vertebrate Host Stage of Trypanosoma cruzi. Mol. Biochem. Parasitol. 2004, 133, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.P.; Torrecilhas, A.C.; Assis, R.R.; Rocha, M.N.; Moura e Castro, F.A.; Freitas, G.F.; Murta, S.M.; Santos, S.L.; Marques, A.F.; Almeida, I.C.; et al. Intraspecies Variation in Trypanosoma cruzi GPI-Mucins: Biological Activities and Differential Expression of α-Galactosyl Residues. Am. J. Trop. Med. Hyg. 2012, 87, 87. [Google Scholar] [CrossRef]
- Cánepa, G.E.; Degese, M.S.; Budu, A.; Garcia, C.R.S.; Buscaglia, C.A. Involvement of TSSA (Trypomastigote Small Surface Antigen) in Trypanosoma cruzi Invasion of Mammalian Cells. Biochem. J. 2012, 444, 211–218. [Google Scholar] [CrossRef]
- Noia, J.M.D.; Buscaglia, C.A.; Marchi, C.R.D.; Almeida, I.C.; Frasch, A.C. A Trypanosoma cruzi Small Surface Molecule Provides the First Immunological Evidence That Chagas’ Disease Is Due to a Single Parasite Lineage. J. Exp. Med. 2002, 195, 401. [Google Scholar] [CrossRef] [PubMed]
- Cámara, M.d.l.M.; Cánepa, G.E.; Lantos, A.B.; Balouz, V.; Yu, H.; Chen, X.; Campetella, O.; Mucci, J.; Buscaglia, C.A. The Trypomastigote Small Surface Antigen (TSSA) Regulates Trypanosoma cruzi Infectivity and Differentiation. PLoS Negl. Trop. Dis. 2017, 11, e0005856. [Google Scholar] [CrossRef] [PubMed]
- Cámara, M.d.l.M.; Balouz, V.; Centeno Cameán, C.; Cori, C.R.; Kashiwagi, G.A.; Gil, S.A.; Macchiaverna, N.P.; Cardinal, M.V.; Guaimas, F.; Lobo, M.M.; et al. Trypanosoma cruzi Surface Mucins Are Involved in the Attachment to the Triatoma Infestans Rectal Ampoule. PLoS Negl. Trop. Dis. 2019, 13, e0007418. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N. Molecular Basis of Mammalian Cell Invasion by Trypanosoma cruzi. An. Acad. Bras. Cienc. 2006, 78, 87–111. [Google Scholar] [CrossRef]
- Onofre, T.S.; Loch, L.; Rodrigues, J.P.F.; Macedo, S.; Yoshida, N. Gp35/50 Mucin Molecules of Trypanosoma cruzi Metacyclic Forms That Mediate Host Cell Invasion Interact with Annexin A2. PLoS Negl. Trop. Dis. 2022, 16, e0010788. [Google Scholar] [CrossRef] [PubMed]
- Mortara, R.A.; da Silva, S.; Araguth, M.F.; Blanco, S.A.; Yoshida, N. Polymorphism of the 35- and 50-Kilodalton Surface Glycoconjugates of Trypanosoma cruzi Metacyclic Trypomastigotes. Infect. Immun. 1992, 60, 4673–4678. [Google Scholar] [CrossRef]
- Urban, I.; Santurio, L.B.; Chidichimo, A.; Yu, H.; Chen, X.; Mucci, J.; Agüero, F.; Buscaglia, C.A. Molecular Diversity of the Trypanosoma cruzi TcSMUG Family of Mucin Genes and Proteins. Biochem. J. 2011, 438, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, N.F.S.; Gonzalez, M.S.; Gomes, J.E.; de Souza, W.; Garcia, E.S.; Azambuja, P.; Nohara, L.L.; Almeida, I.C.; Zingales, B.; Colli, W. Trypanosoma cruzi: Involvement of Glycoinositolphospholipids in the Attachment to the Luminal Midgut Surface of Rhodnius Prolixus. Exp. Parasitol. 2007, 116, 120–128. [Google Scholar] [CrossRef]
- Chanda, I.; Pan, A.; Saha, S.K.; Dutta, C. Comparative Codon and Amino Acid Composition Analysis of Tritryps-Conspicuous Features of Leishmania Major. FEBS Lett. 2007, 581, 5751–5758. [Google Scholar] [CrossRef]
- Lander, N.; Bernal, C.; Diez, N.; Añez, N.; Docampo, R.; Ramírez, J.L. Localization and Developmental Regulation of a Dispersed Gene Family 1 Protein in Trypanosoma cruzi. Infect. Immun. 2010, 78, 231–240. [Google Scholar] [CrossRef]
- Kawashita, S.Y.; da Silva, C.V.; Mortara, R.A.; Burleigh, B.A.; Briones, M.R.S. Homology, Paralogy and Function of DGF-1, a Highly Dispersed Trypanosoma cruzi Specific Gene Family and Its Implications for Information Entropy of Its Encoded Proteins. Mol. Biochem. Parasitol. 2009, 165, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Munjal, G.; Hanmandlu, M.; Srivastava, S. Phylogenetics Algorithms and Applications. Ambient Commun. Comput. Syst. 2018, 904, 187–194. [Google Scholar] [CrossRef]
- Ramírez, J.L. The Elusive Trypanosoma cruzi Disperse Gene Protein Family (DGF-1). Pathogens 2023, 12, 292. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Weiss, L.M.; Braunstein, V.L.; Huang, H. Role of Protein Kinase A in Trypanosoma cruzi. Infect. Immun. 2008, 76, 4757–4763. [Google Scholar] [CrossRef] [PubMed]
- Atwood, J.A.; Minning, T.; Ludolf, F.; Nuccio, A.; Weatherly, D.B.; Alvarez-Manilla, G.; Tarleton, R.; Orlando, R. Glycoproteomics of Trypanosoma cruzi Trypomastigotes Using Subcellular Fractionation, Lectin Affinity, and Stable Isotope Labeling. J. Proteome Res. 2006, 5, 3376–3384. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herreros-Cabello, A.; Callejas-Hernández, F.; Gironès, N.; Fresno, M. Trypanosoma cruzi: Genomic Diversity and Structure. Pathogens 2025, 14, 61. https://doi.org/10.3390/pathogens14010061
Herreros-Cabello A, Callejas-Hernández F, Gironès N, Fresno M. Trypanosoma cruzi: Genomic Diversity and Structure. Pathogens. 2025; 14(1):61. https://doi.org/10.3390/pathogens14010061
Chicago/Turabian StyleHerreros-Cabello, Alfonso, Francisco Callejas-Hernández, Núria Gironès, and Manuel Fresno. 2025. "Trypanosoma cruzi: Genomic Diversity and Structure" Pathogens 14, no. 1: 61. https://doi.org/10.3390/pathogens14010061
APA StyleHerreros-Cabello, A., Callejas-Hernández, F., Gironès, N., & Fresno, M. (2025). Trypanosoma cruzi: Genomic Diversity and Structure. Pathogens, 14(1), 61. https://doi.org/10.3390/pathogens14010061