Prevalence and Characteristics of Plasmid-Mediated Fosfomycin Resistance Gene fosA3 among Salmonella Enteritidis Isolates from Retail Chickens and Children with Gastroenteritis in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. S. Enteritidis Isolates and Fosfomycin Susceptibility Testing
2.2. Plasmid Studies
2.3. Plasmid Sequencing and Analysis
2.4. Nucleotide Sequence Accession Number
3. Results
3.1. Prevalence of Fosfomycin Resistance and Plasmid-Mediated Determinants
3.2. Characteristics of FosA3-Carrying S. Enteritidis Isolates and Plasmids
3.3. Conjugation Experiments
3.4. Sequence Analysis of Plasmids in SJTUF 11561
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silver, L.L. Fosfomycin: Mechanism and resistance. Cold Spring Harb. Perspect. Med. 2017, 7, a025262. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef] [PubMed]
- Zurfluh, K.; Treier, A.; Schmitt, K.; Stephan, R. Mobile fosfomycin resistance genes in Enterobacteriaceae-An increasing threat. Microbiologyopen 2020, 9, e1135. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.Y.; Lu, P.L.; Tseng, S.P. Update on fosfomycin-modified genes in Enterobacteriaceae. J. Microbiol. Immunol. Infect. 2019, 52, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, B.; Li, Y.; Zhu, S.; Xue, F.; Liu, J. Antimicrobial susceptibility and molecular mechanisms of fosfomycin resistance in clinical Escherichia coli isolates in mainland China. PLoS ONE 2015, 10, e0135269. [Google Scholar] [CrossRef]
- Bartoloni, A.; Sennati, S.; Di Maggio, T.; Mantella, A.; Riccobono, E.; Strohmeyer, M.; Revollo, C.; Villagran, A.L.; Pallecchi, L.; Rossolini, G.M. Antimicrobial susceptibility and emerging resistance determinants (blaCTX-M, rmtB, fosA3) in clinical isolates from urinary tract infections in the Bolivian Chaco. Int. J. Infect. Dis. 2016, 43, 1–6. [Google Scholar] [CrossRef]
- Mattioni, M.V.; Hrabak, J.; Bitar, I. Fosfomycin resistance mechanisms in Enterobacterales: An increasing threat. Front. Cell. Infect. Microbiol. 2023, 13, 1178547. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, Y.J.; Yu, J.K.; Jung, S.; Kim, Y.; Jeong, S.H.; Arakawa, Y. Prevalence of acquired fosfomycin resistance among extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae clinical isolates in Korea and IS26-composite transposon surrounding fosA3. J. Antimicrob. Chemother. 2012, 67, 2843–2847. [Google Scholar] [CrossRef]
- Cao, X.L.; Shen, H.; Xu, Y.Y.; Xu, X.J.; Zhang, Z.F.; Cheng, L.; Chen, J.H.; Arakawa, Y. High prevalence of fosfomycin resistance gene fosA3 in blaCTX-M-harbouring Escherichia coli from urine in a Chinese tertiary hospital during 2010–2014. Epidemiol. Infect. 2017, 145, 818–824. [Google Scholar] [CrossRef]
- Villa, L.; Guerra, B.; Schmoger, S.; Fischer, J.; Helmuth, R.; Zong, Z.; García-Fernández, A.; Carattoli, A. IncA/C plasmid carrying blaNDM-1, blaCMY-16, and fosA3 in a Salmonella enterica serovar corvallis strain isolated from a migratory wild bird in Germany. Antimicrob. Agents Chemother. 2015, 59, 6597–6600. [Google Scholar] [CrossRef]
- Gu, X.X.; Zhang, W.H.; Zhang, L.J.; Yang, L.; Fu, J.L.; Jiang, H.X. Prevalence and dissemination of fosfomycin resistance gene fosA3 among Salmonella isolates from food-producing animals. Vet. Sci. China 2017, 47, 514–522. [Google Scholar]
- Fang, L.X.; Jiang, Q.; Deng, G.H.; He, B.; Sun, R.Y.; Zhang, J.F.; Cen, D.J.; Miao, Y.Y.; Wang, D.; Guo, W.Y.; et al. Diverse and flexible transmission of fosA3 associated with heterogeneous multidrug resistance regions in Salmonella enterica Serovar Typhimurium and Indiana isolates. Antimicrob. Agents Chemother. 2020, 64, e02001-19. [Google Scholar] [CrossRef]
- Zhang, L.J.; Gu, X.X.; Zhang, J.; Yang, L.; Lu, Y.W.; Fang, L.X.; Jiang, H.X. Characterization of a fosA3 carrying IncC-IncN plasmid from a multidrug-resistant ST17 Salmonella Indiana isolate. Front. Microbiol. 2020, 11, 1582. [Google Scholar] [CrossRef]
- Wang, D.; Fang, L.X.; Jiang, Y.W.; Wu, D.S.; Jiang, Q.; Sun, R.Y.; Wang, M.G.; Sun, J.; Liu, Y.H.; Liao, X.P. Comparison of the prevalence and molecular characteristics of fosA3 and fosA7 among Salmonella isolates from food animals in China. J. Antimicrob. Chemother. 2022, 77, 1286–1295. [Google Scholar] [CrossRef]
- Wong, M.H.; Chan, E.W.; Chen, S. IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. J. Antimicrob. Chemother. 2017, 72, 2750–2754. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, J.; Xu, X.; Zhou, M.; Shi, C.; Liu, Y.; Shi, X. Dissemination of IncFII plasmids carrying fosA3 and blaCTX-M-55 in clinical isolates of Salmonella enteritidis. Zoonoses Public Health 2021, 68, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, X.; Fernández, J.; Rodríguez-Lozano, J.; Calvo, J.; Rodicio, R.; Rodicio, M.R. Genomic analysis of two MDR isolates of Salmonella enterica serovar infantis from a Spanish hospital bearing the blaCTX-M-65 gene with or without fosA3 in pESI-like Plasmids. Antibiotics 2022, 11, 786. [Google Scholar] [CrossRef]
- Lin, D.C.; Chen, S. First detection of conjugative plasmid-borne fosfomycin resistance gene fosA3 in Salmonella isolates of food origin. Antimicrob. Agents Chemother. 2015, 59, 1381–1383. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, H.; Tang, Y.; Li, Q.; Jiao, X. A multidrug-resistant monophasic Salmonella Typhimurium co-harboring mcr-1, fosA3, blaCTX-M-14 in a transferable IncHI2 plasmid from a healthy catering worker in China. Infect. Drug Resist. 2020, 13, 3569–3574. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.; Zhou, X.; Cui, Y.; Shi, C.; Shi, X. Prevalence and characterization of antimicrobial resistance in Salmonella enterica isolates from retail foods in Shanghai, China. Foodborne Pathog. Dis. 2020, 17, 35–43. [Google Scholar] [CrossRef]
- Moreau, M.R.; Wijetunge, D.S.; Bailey, M.L.; Gongati, S.R.; Goodfield, L.L.; Hewage, E.M.; Kennett, M.J.; Fedorchuk, C.; Ivanov, Y.V.; Linder, J.E.; et al. Growth in egg yolk enhances Salmonella Enteritidis colonization and virulence in a mouse model of human colitis. PLoS ONE 2016, 11, e0150258. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xu, L.; Xu, X.; Zhu, Y.; Suo, Y.; Shi, C.; Shi, X. Antimicrobial resistance and molecular characterization of Salmonella enterica serovar Enteritidis from retail chicken products in Shanghai, China. Foodborne Pathog. Dis. 2018, 15, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhou, X.; Xu, X.; Matthews, K.R.; Liu, Y.; Kuang, D.; Shi, X. Antimicrobial resistance, virulence genes and molecular subtypes of S. Enteritidis isolated from children in Shanghai. J. Infect. Dev. Ctries. 2018, 12, 573–580. [Google Scholar] [CrossRef] [PubMed]
- CLSI. CLSI Supplement M100; Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threlfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Sato, N.; Kawamura, K.; Nakane, K.; Wachino, J.; Arakawa, Y. First detection of fosfomycin resistance gene fosA3 in CTX-M-producing Escherichia coli isolates from healthy individuals in Japan. Microb. Drug Resist. 2013, 19, 477–482. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Z.L.; Liu, J.H.; Zeng, Z.L.; Ma, J.Y.; Jiang, H.X. Emergence of RmtB methylase producing Escherichia coli and Enterobacter cloacae isolates from pigs in China. J. Antimicrob. Chemother. 2007, 59, 880–885. [Google Scholar] [CrossRef]
- Wong, M.H.; Yan, M.; Chan, E.W.; Biao, K.; Chen, S. Emergence of clinical Salmonella enterica serovar Typhimurium isolates with concurrent resistance to ciprofloxacin, ceftriaxone, and azithromycin. Antimicrob. Agents Chemother. 2014, 58, 3752–3756. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef]
- Cai, H.M.; Tang, Y.; Jiang, X.F. Plasmid-mediated fosfomycin resistance genes in Gram-negative bacilli. Lab. Med. 2015, 30, 622–625. [Google Scholar]
- Cheng, Y.; Mei, Q.; Liu, Y.Y.; Cheng, J.; Xiong, Z.Z.; Li, J.B. Detection plasmid-mediated fosfomycin resistance genes in clinical isolated shigella. Acta. Univ. Med. Anhui 2015, 50, 441–445. [Google Scholar]
- Omori, K.; Kitagawa, H.; Takada, M.; Maeda, R.; Nomura, T.; Kubo, Y.; Shigemoto, N.; Ohge, H. Fosfomycin as salvage therapy for persistent methicillin-resistant Staphylococcus aureus bacteremia: A case series and review of the literature. J. Infect. Chemother. 2024, 30, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, M.; Suzuki, K.; Asano, N.; Araki, K.; Shukuya, N.; Egami, T.; Higurashi, Y.; Morita, K.; Uchimura, H.; Watanabe, T. Effectiveness of fosfomycin combined with other antimicrobial agents against multidrug-resistant Pseudomonas aeruginosa isolates using the efficacy time index assay. J. Infect. Chemother. 2002, 8, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Mikhail, S.; Singh, N.B.; Kebriaei, R.; Rice, S.A.; Stamper, K.C.; Castanheira, M.; Rybak, M.J. Evaluation of the synergy of ceftazidime-avibactam in combination with meropenem, amikacin, aztreonam, colistin, or fosfomycin against well-characterized multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2019, 63, e00779-19. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.L.; Chan, J.; Lo, W.U.; Law, P.Y.; Chow, K.H. Plasmid-mediated fosfomycin resistance in Escherichia coli isolated from pig. Vet. Microbiol. 2013, 162, 964–967. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, W.; Liu, Y.; Wang, J.; Lv, L.; Chen, X.; He, D.; Yang, T.; Hou, J.; Tan, Y.; et al. F33: A-: B-, IncHI2/ST3, and IncI1/ST71 plasmids drive the dissemination of fosA3 and blaCTX-M-55/-14/-65 in Escherichia coli from chickens in China. Front. Microbiol. 2014, 5, 688. [Google Scholar] [CrossRef]
- Freitag, C.; Michael, G.B.; Li, J.; Kadlec, K.; Wang, Y.; Hassel, M.; Schwarz, S. Occurrence and characterisation of ESBL-encoding plasmids among Escherichia coli isolates from fresh vegetables. Vet. Microbiol. 2018, 219, 63–69. [Google Scholar] [CrossRef]
- Cheng, K.; Fang, L.X.; Ge, Q.W.; Wang, D.; He, B.; Lu, J.Q.; Zhong, Z.X.; Wang, X.R.; Yu, Y.; Lian, X.L.; et al. Emergence of fosA3 and blaCTX-M-14 in multidrug-resistant Citrobacter freundii isolates from flowers and the retail environment in China. Front. Microbiol. 2021, 12, 586504. [Google Scholar] [CrossRef]
- Nigiz, Ş.; Hazırolan, G.; Köseoglu Eser, Ö.; Gür, D. First detection of Klebsiella pneumoniae isolate co-harboring fosfomycin resistance gene fosA3 and blaCTX-M among gram negative urine isolates in a Turkish hospital. Microb. Drug Resist. 2022, 28, 317–321. [Google Scholar]
- Wong, M.H.; Chan, E.W.; Xie, L.; Li, R.; Chen, S. IncHI2 plasmids are the key vectors responsible for oqxAB transmission among Salmonella species. Antimicrob. Agents Chemother. 2016, 60, 6911–6915. [Google Scholar] [CrossRef]
- He, D.; Liu, L.; Guo, B.; Wu, S.; Chen, X.; Wang, J.; Zeng, Z.; Liu, J.H. Chromosomal location of the fosA3 and blaCTX-M genes in Proteus mirabilis and clonal spread of Escherichia coli ST117 carrying fosA3-positive IncHI2/ST3 or F2:A-:B- plasmids in a chicken farm. Int. J. Antimicrob. Agents 2017, 49, 443–448. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, Z.Y.; Li, Q.C.; Lu, M.J.; Wu, H.; Mei, C.Y.; Shen, P.C.; Jiao, X.; Wang, J. Characterization of extensively drug-resistant Salmonella enterica Serovar Kentucky sequence Type 198 isolates from chicken meat products in xuancheng, China. Microbiol. Spectr. 2023, 11, e0321922. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.Y.; Fang, L.X.; Ke, B.X.; Sun, J.; Wu, Z.W.; Feng, Y.J.; Liu, Y.H.; Ke, C.W.; Liao, X.P. Carriage and transmission of mcr-1 in Salmonella Typhimurium and its monophasic 1,4,[5],12:i:- variants from diarrheal outpatients: A 10-year genomic epidemiology in Guangdong, southern China. Microbiol. Spectr. 2023, 11, e0311922. [Google Scholar] [CrossRef] [PubMed]
- Ho, P.L.; Chan, J.; Lo, W.U.; Law, P.Y.; Li, Z.; Lai, E.L.; Chow, K.H. Dissemination of plasmid-mediated fosfomycin resistance fosA3 among multidrug-resistant Escherichia coli from livestock and other animals. J. Appl. Microbiol. 2013, 114, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Men, S.; Kong, L.; Ma, S.; Yang, Y.; Wang, Y.; Yuan, Q.; Cheng, G.; Zou, W.; Wang, H. Prevalence of plasmid-mediated fosfomycin resistance gene fosA3 Among CTX-M-producing Escherichia coli Isolates from Chickens in China. Foodborne Pathog. Dis. 2017, 14, 210–218. [Google Scholar] [CrossRef]
Origins of Strains (No.) | Distribution (No.) of MIC (μg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
≤32 | 64 | 128 | 256 | 512 | ≥1024 | Resistant Breakpoint | Resistance% (No.) | |
Retail chicken-related samples (146) | 139 | 0 | 0 | 5 | 2 | 0 | ≥256 | 4.79% (7/146) |
Children diarrhea samples (119) | 117 | 0 | 0 | 2 | 0 | 0 | 1.68% (2/119) |
Strains | Origins | MIC (μg/mL) | Antibiotics * | Genes Found | Plasmid Incompatibility (Inc.) Groups | Transfer Frequencies | |
---|---|---|---|---|---|---|---|
Parental | Tran-Conjugants | ||||||
SJTUF 11561 | Chicken wings | 512 | AMP-CRO-STR-SUL-SXT-AZI-FOS | fosA3, blaTEM, sul2, blaCTX-M | IncFIIs, Inc FIB, Inc HI2, Inc X, Inc I1 | Inc FIIs, Inc FIB, Inc HI2, Inc X, Inc I1 | 10−4 |
SJTUF 10993 | Chicken manure | 512 | AMP-STR-TET-SUL-SXT-FOS | fosA3, blaTEM, sul2, tetA | Inc FIIs, Inc FIB, Inc X | Inc FIIs, Inc FIB | 10−5 |
SJTUF 10994 | Chicken manure | 256 | AMP-STR-TET-SUL-SXT-FOS | fosA3, blaTEM, sul2, tetA | Inc FIIs, Inc FIB, Inc X | Inc FIIs, Inc FIB | 10−5 |
SJTUF 11346 | Chicken wings | 256 | SUL-FOS | fosA3, sul2 | Inc FIIs, Inc FIB | Inc FIIs, Inc FIB | 10−5 |
SJTUF 11565 | Chicken heart | 256 | AMP-STR-SUL-SXT-FOS | fosA3, blaTEM, sul2 | Inc FIIs, Inc FIB, IncX | Inc FIIs, Inc FIB | 10−6 |
SJTUF 11642 | Chicken wings | 256 | AMP-STR-SUL-SXT-FOS | fosA3, blaTEM, sul2 | Inc FIIs, Inc FIB, IncX | Inc FIIs, Inc FIB | 10−6 |
SJTUF 11653 | Chicken liver | 256 | AMP-STR-SUL-SXT-FOS | fosA3, blaTEM, sul2 | Inc FIIs, Inc FIB, IncX | Inc FIIs, Inc FIB | 10−6 |
SJTUF 10959 | 1-year-old boy | 256 | TET-SUL-FOS | fosA3, sul2, tetA | Inc FIIs, Inc FIB, Inc X, Inc I1 | Inc FIIs, Inc FIB | 10−5 |
SJTUF 10960 | 1-year-old boy | 256 | TET-SUL-FOS | fosA3, sul2, tetA | Inc FIIs, Inc FIB, Inc X, Inc I1 | Inc FIIs, Inc FIB | 10−5 |
Plasmid Names | Plasmid Sizes (bp) | Plasmid Types | Resistance Genes | Virulence Genes |
---|---|---|---|---|
p11561A | 8056 | \ | fosA3, blaCTX-M-14, tetR | \ |
p11561B | 24,484 | Inc X1 | aph(6)-Id, aph(3″)-Ib, blaTEM, sul2 | \ |
p11561C | 64,327 | Inc FIB, Inc FIIs | blaTEM | spvA, spvR, spvB, pagC |
p11561D | 109,062 | Inc I1-I | \ | afaD, cia |
p11561E | 168,488 | Inc HI2 | \ | terC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Yi, S.; Xu, X.; Zheng, L.; Liu, H.; Zhou, X. Prevalence and Characteristics of Plasmid-Mediated Fosfomycin Resistance Gene fosA3 among Salmonella Enteritidis Isolates from Retail Chickens and Children with Gastroenteritis in China. Pathogens 2024, 13, 816. https://doi.org/10.3390/pathogens13090816
Liu L, Yi S, Xu X, Zheng L, Liu H, Zhou X. Prevalence and Characteristics of Plasmid-Mediated Fosfomycin Resistance Gene fosA3 among Salmonella Enteritidis Isolates from Retail Chickens and Children with Gastroenteritis in China. Pathogens. 2024; 13(9):816. https://doi.org/10.3390/pathogens13090816
Chicago/Turabian StyleLiu, Liyuan, Shanrong Yi, Xuebin Xu, Liya Zheng, Hong Liu, and Xiujuan Zhou. 2024. "Prevalence and Characteristics of Plasmid-Mediated Fosfomycin Resistance Gene fosA3 among Salmonella Enteritidis Isolates from Retail Chickens and Children with Gastroenteritis in China" Pathogens 13, no. 9: 816. https://doi.org/10.3390/pathogens13090816
APA StyleLiu, L., Yi, S., Xu, X., Zheng, L., Liu, H., & Zhou, X. (2024). Prevalence and Characteristics of Plasmid-Mediated Fosfomycin Resistance Gene fosA3 among Salmonella Enteritidis Isolates from Retail Chickens and Children with Gastroenteritis in China. Pathogens, 13(9), 816. https://doi.org/10.3390/pathogens13090816