Green Tea Catechin Epigallocatechin Gallate Inhibits Vegetative Cell Outgrowth and Expression of Beta-Lactamase Genes in Penicillin-Resistant Bacillus anthracis Strain PCr
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Media
2.2. Effect of EGCg on B. anthracis Spores
2.3. Time-Kill Kinetics Assay and MIC Determination
2.4. Beta-Lactamase Production and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis
2.5. Statistical Analyses
3. Results
3.1. EGCg Decreased the MIC of Antibiotic Treatments of Penicillin-Resistant B. anthracis Strain PCr
3.2. Inhibitory Effect of EGCg on B. anthracis Vegetative Cell Outgrowth
3.3. Beta-Lactamase Production in Penicillin-Resistant B. anthracis Strain PCr
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bush, L.M.; Abrams, B.H.; Beall, A.; Johnson, C.C. Index case of fatal inhalational anthrax due to bioterrorism in the United States. N. Engl. J. Med. 2001, 345, 1607–1610. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, K.; Zacchia, N.A. Total decontamination cost of the anthrax letter attacks. Biosecur. Bioterror. 2012, 10, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.G.; Kirvel, R.D.; Love, A.H.; Bailey, C.G.; Miles, R.; Schweickert, J.; Sutton, M.; Raber, E. Decontamination after a release of Bacillus anthracis spores. Biosecur. Bioterror. 2012, 10, 108–122. [Google Scholar] [CrossRef]
- Scorpio, A.; Chabot, D.J.; Day, W.A.; O’Brien, D.K.; Vietri, N.J.; Itoh, Y.; Mohamadzadeh, M.; Friedlander, A.M. Poly-gamma-glutamate capsule-degrading enzyme treatment enhances phagocytosis and killing of encapsulated Bacillus anthracis. Antimicrob. Agents Chemother. 2007, 51, 215–222. [Google Scholar] [CrossRef]
- Ogunleye, A.; Bhat, A.; Irorere, V.U.; Hill, D.; Williams, C.; Radecka, I. Poly-gamma-glutamic acid: Production, properties and applications. Microbiology 2015, 161, 1–17. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Surveillance and Control of Anthrax in Humans and Animals, 3rd ed.; World Health Organization: Geneva, Switzerland, 1998; Available online: https://iris.who.int/handle/10665/59516 (accessed on 18 August 2024).
- Chen, Y.; Succi, J.; Tenover, F.C.; Koehler, T.M. Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. J. Bacteriol. 2003, 185, 823–830. [Google Scholar] [CrossRef]
- Ågren, J.; Finn, M.; Bengtsson, B.; Segerman, B. Microevolution during an anthrax outbreak leading to clonal heterogeneity and penicillin resistance. PLoS ONE 2014, 9, e89112. [Google Scholar] [CrossRef]
- Friedman, M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol. Nutr. Food Res. 2007, 51, 116–134. [Google Scholar] [CrossRef]
- Taylor, P.W.; Hamilton-Miller, J.M.; Stapleton, P.D. Antimicrobial properties of green tea catechins. Food Sci. Technol. Bull. 2005, 2, 71–81. [Google Scholar] [CrossRef]
- Sudano Roccaro, A.; Blanco, A.R.; Giuliano, F.; Rusciano, D.; Enea, V. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob. Agents Chemother. 2004, 48, 1968–1973. [Google Scholar] [CrossRef]
- Zhao, W.H.; Hu, Z.Q.; Hara, Y.; Shimamura, T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob. Agents Chemother. 2002, 46, 2266–2268. [Google Scholar] [CrossRef]
- Nakayama, M.; Shimatani, K.; Ozawa, T.; Shigemune, N.; Tomiyama, D.; Yui, K.; Katsuki, M.; Ikeda, K.; Nonaka, A.; Miyamoto, T. Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis. Biosci. Biotechnol. Biochem. 2015, 79, 845–854. [Google Scholar] [CrossRef]
- Friedman, M.; Henika, P.R.; Levin, C.E.; Mandrell, R.E.; Kozukue, N. Antimicrobial activities of tea catechins and theaflavins and tea extracts against Bacillus cereus. J. Food Prot. 2006, 69, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Dell’Aica, I.; Dona, M.; Tonello, F.; Piris, A.; Mock, M.; Montecucco, C.; Garbisa, S. Potent inhibitors of anthrax lethal factor from green tea. EMBO Rep. 2004, 5, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Falcinelli, S.D.; Shi, M.C.; Friedlander, A.M.; Chua, J. Green tea and epigallocatechin-3-gallate are bactericidal against Bacillus anthracis. FEMS Microbiol. Lett. 2017, 364, fnx127. [Google Scholar] [CrossRef]
- Zhao, W.H.; Hu, Z.Q.; Okubo, S.; Hara, Y.; Shimamura, T. Mechanism of synergy between epigallocatechin gallate and beta-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2001, 45, 1737–1742. [Google Scholar] [CrossRef]
- Okutani, A.; Inoue, S.; Morikawa, S. Comparative genomics and phylogenetic analysis of Bacillus anthracis strains isolated from domestic animals in Japan. Infect. Genet. Evol. 2019, 71, 128–139. [Google Scholar] [CrossRef]
- Okutani, A.; Inoue, S.; Morikawa, S. Complete genome sequences of penicillin-resistant Bacillus anthracis strain PCr, isolated from bone powder. Microbiol. Resour. Announc. 2019, 8, e00670-19. [Google Scholar] [CrossRef]
- Okugawa, S.; Moayeri, M.; Pomerantsev, A.P.; Sastalla, I.; Crown, D.; Gupta, P.K.; Leppla, S.H. Lipoprotein biosynthesis by prolipoprotein diacylglyceryl transferase is required for efficient spore germination and full virulence of Bacillus anthracis. Mol. Microbiol. 2012, 83, 96–109. [Google Scholar] [CrossRef]
- Moir, A.; Cooper, G. Spore germination. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef]
- Reygaert, W.C. Green Tea Catechins: Their Use in Treating and Preventing Infectious Diseases. Biomed. Res. Int. 2018, 17, 910526. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhou, X.D.; Wu, C.D. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrob. Agents Chemother. 2011, 55, 1229–1236. [Google Scholar] [CrossRef]
- Steinmann, J.; Buer, J.; Pietschmann, T.; Steinmann, E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Brit. J. Pharmacol. 2013, 168, 1059–1073. [Google Scholar] [CrossRef]
- Blanco, A.R.; Sudano-Roccaro, A.; Spoto, G.C.; Nostro, A.; Rusciano, D. Epigallocatechin gallate inhibits biofilm formation by ocular staphylococcal isolates. Antimicrob. Agents Chemother. 2015, 49, 4339–4343. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Kim, S.H.; Kim, H.; Yeom, J.; Ko, K.; Park, W.; Park, S. AFM probing the mechanism of synergistic effects of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) with cefotaxime against extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. PLoS ONE 2012, 7, e48880. [Google Scholar] [CrossRef]
- Shimamura, Y.; Utsumi, M.; Hirai, C.; Nakano, S.; Ito, S.; Tsuji, A.; Ishii, T.; Hosoya, T.; Kan, T.; Ohashi, N.; et al. Binding of Catechins to Staphylococcal Enterotoxin A. Molecules 2018, 23, 1125. [Google Scholar] [CrossRef]
- Koehler, T.M. Bacillus anthracis physiology and genetics. Mol. Asp. Med. 2009, 30, 386–396. [Google Scholar] [CrossRef] [PubMed]
EGCg (µg/mL) | MIC of Penicillin (µg/mL) | MIC of Meropenem (µg/mL) | ||
---|---|---|---|---|
PCr | BA103 | PCr | BA103 | |
0 | >800 | 0.125 | >1024 | 0.063 |
25 | >800 | 0.25 | 256 | 0.063 |
50 | 100 | 0.016 | 128 | 0.031 |
100 | <100 | * | <64 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okutani, A.; Morikawa, S.; Maeda, K. Green Tea Catechin Epigallocatechin Gallate Inhibits Vegetative Cell Outgrowth and Expression of Beta-Lactamase Genes in Penicillin-Resistant Bacillus anthracis Strain PCr. Pathogens 2024, 13, 699. https://doi.org/10.3390/pathogens13080699
Okutani A, Morikawa S, Maeda K. Green Tea Catechin Epigallocatechin Gallate Inhibits Vegetative Cell Outgrowth and Expression of Beta-Lactamase Genes in Penicillin-Resistant Bacillus anthracis Strain PCr. Pathogens. 2024; 13(8):699. https://doi.org/10.3390/pathogens13080699
Chicago/Turabian StyleOkutani, Akiko, Shigeru Morikawa, and Ken Maeda. 2024. "Green Tea Catechin Epigallocatechin Gallate Inhibits Vegetative Cell Outgrowth and Expression of Beta-Lactamase Genes in Penicillin-Resistant Bacillus anthracis Strain PCr" Pathogens 13, no. 8: 699. https://doi.org/10.3390/pathogens13080699
APA StyleOkutani, A., Morikawa, S., & Maeda, K. (2024). Green Tea Catechin Epigallocatechin Gallate Inhibits Vegetative Cell Outgrowth and Expression of Beta-Lactamase Genes in Penicillin-Resistant Bacillus anthracis Strain PCr. Pathogens, 13(8), 699. https://doi.org/10.3390/pathogens13080699