Exposure to Arboviruses in Cattle: Seroprevalence of Rift Valley Fever, Bluetongue, and Epizootic Hemorrhagic Disease Viruses and Risk Factors in Baringo County, Kenya
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Design Characteristics
2.2. Sample and Data Collection
2.3. RVFV, BTV, and EHDV Competitive ELISA
2.4. RVFV IgM Antibody Capture ELISA
2.5. Statistical Analysis
3. Results
3.1. Cattle Owner and Herd Information
3.2. Seroprevalence of RVFV, BTV, and EHDV
3.3. Risk Factor Analysis of Seropositivity to RVFV, BTV, and EHDV
3.4. Risk Factor Analysis Based on Viral Dual Exposure
4. Discussion
5. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lawrence, T.J.; Vilbig, J.M.; Kangogo, G.; Fèvre, E.M.; Deem, S.L.; Gluecks, I.; Sagan, V.; Shacham, E. Spatial changes to climatic suitability and availability of agropastoral farming systems across Kenya (1980–2020). Outlook Agric. 2023, 52, 186–199. [Google Scholar] [CrossRef]
- Descheemaeker, K.; Zijlstra, M.; Masikati, P.; Crespo, O.; Tui, S.H. Effects of climate change and adaptation on the livestock component of mixed farming systems: A modelling study from semi-arid Zimbabwe. Agric. Syst. 2017, 159, 282–295. [Google Scholar] [CrossRef]
- Upton, M. Is Africa different? Economics of the livestock sector. Gates Open Res. 2019, 3, 986. [Google Scholar] [CrossRef]
- Nuvey, F.S.; Arkoazi, J.; Hattendorf, J.; Mensah, G.I.; Addo, K.K.; Fink, G.; Zinsstag, J.; Bonfoh, B. Effectiveness and profitability of preventive veterinary interventions in controlling infectious diseases of ruminant livestock in sub-Saharan Africa: A scoping review. BMC Vet. Res. 2022, 18, 332. [Google Scholar] [CrossRef]
- Wright, D.; Kortekaas, J.; Bowden, T.A.; Warimwe, G.M. Rift Valley fever: Biology and epidemiology. J. Gen. Virol. 2019, 100, 1187–1199. [Google Scholar] [CrossRef] [PubMed]
- Pepin, M.; Bouloy, M.; Bird, B.H.; Kemp, A.; Paweska, J. Rift Valley fever virus (Bunyaviridae: Phlebovirus): An update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet. Res. 2010, 41, 61. [Google Scholar] [CrossRef] [PubMed]
- Munyua, P.; Murithi, R.M.; Wainwright, S.; Githinji, J.; Hightower, A.; Mutonga, D.; Macharia, J.; Ithondeka, P.M.; Musaa, J.; Breiman, R.F.; et al. Rift Valley fever outbreak in livestock in Kenya, 2006–2007. Am. J. Trop. Med. Hyg. 2010, 83, 58–64. [Google Scholar] [CrossRef]
- Rich, K.M.; Wanyoike, F. An assessment of the regional and national socio-economic impacts of the 2007 Rift Valley fever outbreak in Kenya. Am. J. Trop. Med. Hyg. 2010, 83, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Rissmann, M.; Stoek, F.; Pickin, M.J.; Groschup, M.H. Mechanisms of inter-epidemic maintenance of Rift Valley fever phlebovirus. Antivir. Res. 2020, 174, 104692. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, Z.; Bellis, G.; Xie, J.; Li, L. Full genome sequencing of three Sedoreoviridae viruses isolated from Culicoides spp. (Diptera, Ceratopogonidae) in China. Viruses 2022, 14, 971. [Google Scholar] [CrossRef]
- Jenckel, M.; Schulz, C.; Sailleau, C.; Viarouge, C.; Hoffmann, B.; Beer, M. Complete coding genome sequence of putative novel bluetongue virus serotype 27. Genome Announc. 2015, 3, e00016-15. [Google Scholar] [CrossRef] [PubMed]
- Maan, S.; Maan, N.S.; Nomikou, K.; Batten, C.; Antony, F.; Belaganahalli, M.N.; Samy, A.M.; Reda, A.A.; Al-Rashid, S.A.; El Batel, M.; et al. Novel bluetongue virus serotype from Kuwait. Emerg. Infect. Dis. 2011, 17, 886–889. [Google Scholar] [CrossRef] [PubMed]
- Bumbarov, V.; Golender, N.; Jenckel, M.; Wernike, K.; Beer, M.; Khinich, E.; Zalesky, O.; Erster, O. Characterization of bluetongue virus serotype 28. Transbound. Emerg. Dis. 2020, 67, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Gu, W.; Li, Z.; Zhang, L.; Liao, D.; Song, J.; Shi, B.; Hasimu, J.; Li, Z.; Yang, Z.; et al. Novel putative bluetongue virus serotype 29 isolated from inapparently infected goat in Xinjiang of China. Transbound. Emerg. Dis. 2021, 68, 2543–2555. [Google Scholar] [CrossRef] [PubMed]
- Mellor, P.S. The replication of bluetongue virus in Culicoides vectors. Curr. Top. Microbiol. Immunol. 1990, 162, 143–161. [Google Scholar] [CrossRef]
- Rojas, J.M.; Rodríguez-martín, D.; Martín, V.; Sevilla, N. Diagnosing bluetongue virus in domestic ruminants: Current perspectives. Vet. Med. 2019, 10, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Dione, M.M.; Séry, A.; Sidibé, C.A.K.; Wieland, B.; Fall, A. Exposure to multiple pathogens-serological evidence for Rift Valley fever virus, Coxiella burnetii, bluetongue virus and Brucella spp. in cattle, sheep and goat in Mali. PLoS Negl. Trop. Dis. 2022, 16, e0010342. [Google Scholar] [CrossRef] [PubMed]
- Elbers, A.R.W.; Backx, A.; Meroc, E.; Gerbier, G.; Staubach, C.; Hendrickx, G. Field observations during the bluetongue serotype 8 epidemic in 2006 I. Detection of first outbreaks and clinical signs in sheep and cattle in Belgium, France and The Netherlands. Prev. Vet. Med. 2008, 87, 21–30. [Google Scholar] [CrossRef]
- Gethmann, J.; Probst, C.; Conraths, F.J. Economic impact of a bluetongue serotype 8 epidemic in Germany. Front. Vet. Sci. 2020, 14, 65. [Google Scholar] [CrossRef]
- Maclachlan, N.J.; Osburn, B.I. Impact of bluetongue virus infection on the international movement and trade of ruminants. J. Am. Vet. Med. Assoc. 2006, 228, 1346–1349. [Google Scholar] [CrossRef]
- Toye, P.G.; Batten, C.A.; Kiara, H.; Henstock, M.R.; Edwards, L.; Thumbi, S.; Poole, E.J.; Handel, I.G.; Bronsvoort, B.M.; Hanotte, O.; et al. Bluetongue and epizootic haemorrhagic disease virus in local breeds of cattle in Kenya. Res. Vet. Sci. 2013, 94, 769–773. [Google Scholar] [CrossRef]
- Savini, G.; Afonso, A.; Mellor, P.; Aradaib, I.; Yadin, H.; Sanaa, M.; Wilson, W.; Monaco, F.; Domingo, M. Epizootic heamorragic disease. Res. Vet. Sci. 2011, 91, 1–17. [Google Scholar] [CrossRef]
- Kedmi, M.; Straten, M.V.; Ezra, E.; Galon, N.; Klement, E. Assessment of the productivity effects associated with epizootic hemorrhagic disease in dairy herds. J. Dairy Sci. 2010, 93, 2486–2495. [Google Scholar] [CrossRef]
- Jiménez-Cabello, L.; Utrilla-Trigo, S.; Lorenzo, G.; Ortego, J.; Calvo-Pinilla, E. Epizootic hemorrhagic disease virus: Current knowledge and emerging perspectives. Microorganisms 2023, 11, 1339. [Google Scholar] [CrossRef] [PubMed]
- Sana, K.; Soufien, S.; Thameur, B.H.; Liana, T.; Massimo, S.; Kaouther, G.; Raja, G.; Haikel, H.; Bassem, B.H.M.; Wiem, K.; et al. Risk-based serological survey of bluetongue and the first evidence of bluetongue virus serotype 26 circulation in Tunisia. Vet. Med. Sci. 2022, 8, 1671–1682. [Google Scholar] [CrossRef]
- Walker, A.R. Seasonal fluctuations of Culicoides species (Diptera: Ceratopogonidae). Bull. Entomol. Res. 1977, 67, 217–233. [Google Scholar] [CrossRef]
- Ogola, E.O.; Kopp, A.; Bastos, A.D.S.; Slothouwer, I.; Marklewitz, M.; Omoga, D.; Rotich, G.; Getugi, C.; Sang, R.; Torto, B.; et al. Jingmen tick virus in ticks from Kenya. Viruses 2022, 14, 1041. [Google Scholar] [CrossRef] [PubMed]
- Omoga, D.C.A.; Tchouassi, D.P.; Venter, M.; Ogola, E.O.; Langat, S.; Getugi, C.; Eibner, G.; Kopp, A.; Slothouwer, I.; Torto, B.; et al. Characterization of a novel orbivirus from cattle reveals active circulation of a previously unknown and pathogenic orbivirus in ruminants in Kenya. mSphere 2023, 8, e0048822. [Google Scholar] [CrossRef] [PubMed]
- Tchouassi, D.P.; Marklewitz, M.; Chepkorir, E.; Zirkel, F.; Agha, S.B.; Tigoi, C.C.; Koskei, E.; Drosten, C.; Borgemeister, C.; Torto, B.; et al. Sand fly-associated Phlebovirus with evidence of neutralizing antibodies in humans, Kenya. Emerg. Infect. Dis. 2019, 25, 681–690. [Google Scholar] [CrossRef]
- Chiuya, T.; Fevre, E.M.; Junglen, S.; Borgemeister, C. Understanding knowledge, attitude and perception of Rift Valley fever in Baringo South, Kenya: A cross-sectional study. PLoS Glob. Public Health 2023, 3, e0002195. [Google Scholar] [CrossRef]
- Nyangau, P.N.; Nzuma, J.M.; Irungu, P.; Kassie, M. Evaluating livestock farmers knowledge, beliefs, and management of arboviral diseases in Kenya: A multivariate fractional probit approach. PLoS Negl. Trop. Dis. 2021, 15, e0009786. [Google Scholar] [CrossRef] [PubMed]
- Mbaabu, P.R.; Olago, D.; Gichaba, M.; Eckert, S.; Eschen, R.; Oriaso, S.; Choge, S.K.; Linders, T.E.W.; Schaffner, U. Restoration of degraded grasslands, but not invasion by Prosopis juliflora, avoids trade-offs between climate change mitigation and other ecosystem services. Sci. Rep. 2020, 10, 20391. [Google Scholar] [CrossRef] [PubMed]
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Malaria and Rift Valley Fever in Baringo County. 2016. Available online: http://vbd-environment.org/tdr-idrc/assets/documents/Project_B_Papers_and_Resources/Project_B_Team_Estambale_WHO_Pamphlet.pdf (accessed on 12 October 2022).
- Bett, B.; Lindahl, J.; Sang, R.; Wainaina, M.; Kairu-Wanyoike, S.; Bukachi, S.; Njeru, I.; Karanja, J.; Ontiri, E.; Kariuki-Njenga, M.; et al. Association between Rift Valley fever virus seroprevalences in livestock and humans and their respective intra-cluster correlation coefficients, Tana River County, Kenya. Epidemiol. Infect. 2019, 147, e67. [Google Scholar] [CrossRef] [PubMed]
- Alimohamadi, Y.; Sepandi, M. Considering the design effect in cluster sampling. J. Cardiovasc. Thorac. Res. 2019, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- World Resources Institute. 2023. Available online: https://www.wri.org/resources/data_sets (accessed on 27 April 2019).
- Environmental Systems Research Institute. ArcGIS Desktop v. 10.2, Environmental Systems Research Institute: Redlands, CA, USA, 2012.
- Kortekaas, J.; Kant, J.; Vloet, R.; Cêtre-Sossah, C.; Marianneau, P.; Lacote, S.; Banyard, A.C.; Jeffries, C.; Eiden, M.; Groschup, M.; et al. European ring trial to evaluate ELISAs for the diagnosis of infection with Rift Valley fever virus. J. Virol. Methods 2013, 187, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Niedbalski, W. Evaluation of commercial ELISA kits for the detection of antibodies against bluetongue virus. Pol. J. Vet. Sci. 2011, 14, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Bréard, E.; Viarouge, C.; Donnet, F.; Sailleau, C.; Rossi, S.; Pourquier, P.; Vitour, D.; Comtet, L.; Zientara, S. Evaluation of a commercial ELISA for detection of epizootic haemorrhagic disease antibodies in domestic and wild ruminant sera. Transbound. Emerg. Dis. 2020, 67, 2475–2481. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- de Glanville, W.A.; Thomas, L.F.; Cook, E.A.J.; Bronsvoort, B.M.C.; Wamae, N.C.; Kariuki, S.; Fèvre, E.M. Household socio-economic position and individual infectious disease risk in rural Kenya. Sci. Rep. 2019, 9, 2972. [Google Scholar] [CrossRef] [PubMed]
- Kitchen, S.F. Laboratory infections with the virus of Rift Valley fever. Am. J. Trop. Med. 1934, s1–14, 547–564. [Google Scholar] [CrossRef]
- Daubney, R.; Hudson, J.R.; Garnham, P.C. Enzootic hepatitis or Rift Valley fever. An undescribed virus disease of sheep cattle and man from East Africa. J. Pathol. Bacteriol. 1931, 34, 545–579. [Google Scholar] [CrossRef]
- Hassan, A.; Muturi, M.; Mwatondo, A.; Omolo, J.; Bett, B.; Gikundi, S.; Konongoi, L.; Ofula, V.; Makayotto, L.; Kasiti, J.; et al. Epidemiological investigation of a Rift Valley Fever outbreak in humans and livestock in Kenya, 2018. Am. J. Trop. Med. Hyg. 2020, 103, 1649–1655. [Google Scholar] [CrossRef] [PubMed]
- WHO. Rift Valley Fever-Kenya. 2021. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2021-DON311 (accessed on 10 November 2023).
- Murithi, R.M.; Munyua, P.; Ithondeka, P.M.; MacHaria, J.M.; Hightower, A.; Luman, E.T.; Breiman, R.F.; Njenga, M.K. Rift Valley fever in Kenya: History of epizootics and identification of vulnerable districts. Epidemiol. Infect. 2011, 139, 372–380. [Google Scholar] [CrossRef]
- Matiko, M.K.; Salekwa, L.P.; Kasanga, C.J.; Kimera, S.I.; Evander, M.; Nyangi, W.P. Serological evidence of inter-epizootic/inter-epidemic circulation of Rift Valley fever virus in domestic cattle in Kyela and Morogoro, Tanzania. PLoS Negl. Trop. Dis. 2018, 12, e0006931. [Google Scholar] [CrossRef] [PubMed]
- Ngoshe, Y.B.; Avenant, A.; Rostal, M.K.; Karesh, W.B.; Paweska, J.T.; Bagge, W.; Jansen van Vuren, P.; Kemp, A.; Cordel, C.; Msimang, V.; et al. Patterns of Rift Valley fever virus seropositivity in domestic ruminants in central South Africa four years after a large outbreak. Sci. Rep. 2020, 10, 5489. [Google Scholar] [CrossRef] [PubMed]
- Owange, N.O.; Ogara, W.O.; Affognon, H.; Peter, G.B.; Kasiiti, J.; Okuthe, S.; Okuthe, S.; Onyango-Ouma, W.; Landmann, T.; Sang, R.; et al. Occurrence of Rift Valley fever in cattle in Ijara district, Kenya. Prev. Vet. Med. 2014, 117, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Sindato, C.; Pfeiffer, D.U.; Karimuribo, E.D.; Mboera, L.E.G.; Rweyemamu, M.; Paweska, J.T. A spatial analysis of Rift Valley fever virus seropositivity in domestic ruminants in Tanzania. PLoS ONE 2015, 10, e0131873. [Google Scholar] [CrossRef] [PubMed]
- WHO. Fact Sheet: Rift Valley Fever. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/rift-valley-fever (accessed on 10 November 2023).
- World Animal Health Information System Disease Events. 2024. Available online: https://wahis.woah.org/#/in-event/5534/dashboard (accessed on 18 January 2024).
- Gachohi, J.; Bett, B. Rift Valley Fever: Influence of Herd Immunity Patterns on Transmission Dynamics. In Proceedings of the Regional Conference on Zoonotic Diseases in Eastern Africa, Naivasha, Kenya, 9–12 March 2015; Available online: https://www.slideshare.net/ILRI/rvf-herd-immunity-and-transmission-dynamics (accessed on 26 July 2023).
- Svitek, N. Bluetongue Virus in Kenya: Insights from Isiolo and Progress on Molecular Typing and Virus Isolation. In Proceedings of the PALE-Blu Blue Tongue Virus Consortium Meeting, Giulianova, Italy, 26 September 2019; Available online: https://www.slideshare.net/ILRI/blue-tongue-virus-kenya (accessed on 26 July 2023).
- Dommergues, L.; Viarouge, C.; Métras, R.; Youssou, C.; Sailleau, C.; Zientara, S.; Cardinale, E.; Cêtre-Sossah, C. Evidence of bluetongue and epizootic haemorrhagic disease circulation on the island of Mayotte. Acta Trop. 2019, 191, 24–28. [Google Scholar] [CrossRef]
- Adam, I.A.; Abdalla, M.A.; Mohamed, M.E.H.; Aradaib, I.E. Prevalence of bluetongue virus infection and associated risk factors among cattle in North Kordufan State, western Sudan. BMC Vet. Res. 2014, 10, 94. [Google Scholar] [CrossRef]
- Gordon, S.J.G.; Bolwell, C.; Rogers, C.W.; Musuka, G.; Kelly, P.; Guthrie, A.; Mellor, P.S.; Hamblin, C. A serosurvey of bluetongue and epizootic haemorrhagic disease in a convenience sample of sheep and cattle herds in Zimbabwe. Onderstepoort J. Vet. Res. 2017, 84, a1505. [Google Scholar] [CrossRef]
- Ishaq, M.; Shah, S.A.A.; Khan, N.; Jamal, S.M. Prevalence and risk factors of bluetongue in small and large ruminants maintained on Government farms in North-western Pakistan. Res. Vet. Sci. 2023, 161, 38–44. [Google Scholar] [CrossRef]
- Ferrara, G.; Improda, E.; Piscopo, F.; Esposito, R.; Iovane, G.; Pagnini, U.; Montagnaro, S. Bluetongue virus seroprevalence and risk factor analysis in cattle and water buffalo in southern Italy (Campania region). Vet. Res. Commun. 2024, 48, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Roger, M.; Sailleau, C.; Ce, C.; Esnault, O.; Cardinale, E.; Viarouge, C.; Viarouge, C.; Beral, M.; Esnault, O.; Cardinale, E. Epizootic haemorrhagic disease virus in Reunion Island: Evidence for the circulation of a new serotype and associated risk factors. Vet. Microbiol. 2014, 170, 383–390. [Google Scholar] [CrossRef]
- Burns, D.A. Diseases caused by arthropods and other noxious animals. In Rook’s Textbook of Dermatology, 8th ed.; Burns, T., Breathnach, S., Cox, N., Griffiths, C., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; Volume 1. [Google Scholar]
- Carpenter, S.; Wilson, A.; Barber, J.; Veronesi, E.; Mellor, P.; Venter, G.; Gubbins, S. Temperature dependence of the extrinsic incubation period of orbiviruses in Culicoides biting midges. PLoS ONE 2011, 6, e27987. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, E.J.; Mello, P.S.; Baylis, M. Effect of temperature on the transmission of orbiviruses by the biting midge, Culicoides sonorensis. Med. Vet. Entomol. 2002, 16, 147–156. [Google Scholar] [CrossRef]
- Ogola, E.O.; Bastos, A.D.S.; Slothouwer, I.; Getugi, C.; Osalla, J.; Omoga, D.C.A.; Ondifu, D.O.; Sang, R.; Torto, B.; Junglen, S.; et al. Viral diversity and blood-feeding patterns of Afrotropical Culicoides biting midges (Diptera: Ceratopogonidae). Front. Microbiol. 2024, 14, 1325473. [Google Scholar] [CrossRef]
- Kedmi, M.; Galon, N.; Herziger, Y.; Yadin, H.; Bombarov, V.; Batten, C.; Shpigel, N.Y.; Klement, E. Comparison of the epidemiology of epizootic haemorrhagic disease and bluetongue viruses in dairy cattle in Israel. Vet. J. 2011, 190, 77–83. [Google Scholar] [CrossRef]
- Christensen, S.A.; Stallknecht, D.E.; Ruder, M.G.; Williams, D.M.; Porter, W.F. The role of drought as a determinant of hemorrhagic disease in the eastern United States. Glob. Chang. Biol. 2020, 26, 3799–3808. [Google Scholar] [CrossRef]
- Maclachlan, N.J.; Zientara, S.; Savini, G.; Daniels, P.W. Epizootic haemorrhagic disease. Rev. Sci. Tech. 2015, 34, 341–351. [Google Scholar] [CrossRef]
- The Kenya Veterinary Vaccines Production Institute. Available online: https://kevevapi.or.ke/wp-content/uploads/2022/05/BLUEVAX%E2%84%A2.pdf (accessed on 10 December 2023).
- Sumaye, R.D.; Geubbels, E.; Mbeyela, E.; Berkvens, D. Inter-epidemic transmission of Rift Valley fever in livestock in the Kilombero River Valley, Tanzania: A cross-sectional survey. PLoS Negl. Trop. Dis. 2013, 7, e2356. [Google Scholar] [CrossRef]
- Muturi, M.; Mwatondo, A.; Nijhof, A.M.; Akoko, J.; Nyamota, R.; Makori, A.; Nyamai, M.; Nthiwa, D.; Wambua, L.; Roesel, K.; et al. Ecological and subject—level drivers of interepidemic Rift Valley fever virus exposure in humans and livestock in northern Kenya. Sci. Rep. 2023, 13, 15342. [Google Scholar] [CrossRef]
- Selim, A.; Marzok, M.; Alkashif, K.; Kandeel, M.; Salem, M. Bluetongue virus infection in cattle: Serosurvey and its associated risk factors. Trop. Anim. Health Prod. 2023, 55, 285. [Google Scholar] [CrossRef] [PubMed]
Risk Factor and Category | Total No. (%) | Rift Valley Fever Virus | ||
---|---|---|---|---|
No. +ve (%) | Odds Ratio (95% CI) | p-Value | ||
Sex | ||||
Female | 289 (72.3) | 58 (20.1) | 6.72 (2.67–22.56) | 0.000 |
Male | 111 (27.8) | 4 (3.6) | - | |
Age | ||||
Adult | 300 (75) | 58 (19.3) | 4.55 (1.61–19.12) | 0.013 |
Young | 40 (10) | 3 (7.5) | 0.48 (0.02–3.96) | 0.540 |
Calf | 60 (15) | 1 (1.7) | 1.0 | 0.000 |
Body condition score | ||||
1–2.5 | 197 (49.3) | 38 (19.3) | 1.78 (1.03–3.14) | 0.041 |
3–5 | 203 (50.8) | 24 (11.8) | 1.0 | - |
Risk Factor and Category | Total No. (%) | Bluetongue Virus | ||
---|---|---|---|---|
No. +ve (%) | Odds Ratio (95% CI) | p-Value | ||
Sex | ||||
Female | 289 (72.3) | 266 (92) | 1.27 (0.58–2.65) | 0.532 |
Male | 111 (27.8) | 100 (90.1) | 1.0 | - |
Age | ||||
Adult | 300 (75) | 297 (99) | 61.54 (20.21–268.48) | 0.000 |
Young | 40 (10) | 37 (92.5) | 2.49 (1.01–6.64) | 0.056 |
Calf | 60 (15) | 32 (53.3) | 1.0 | 0.000 |
Body condition score | ||||
1–2.5 | 197 (49.3) | 174 (88.3) | 0.43 (0.20–0.90) | 0.028 |
3–5 | 203 (50.8) | 192 (94.6) | 1.0 | - |
Risk Factor and Category | Total No. (%) | Epizootic Hemorrhagic Disease Virus | ||
---|---|---|---|---|
No. +ve (%) | Odds Ratio (95% CI) | p-Value | ||
Sex | ||||
Female | 289 (72.3) | 262 (90.7) | 0.86 (0.37–1.82) | 0.700 |
Male | 111 (27.8) | 102 (91.9) | 1.0 | - |
Age | ||||
Adult | 300 (75) | 293 (97.7) | 0.000 | |
Young | 40 (10) | 35 (87.5) | 4.67 (1.71–15.09) | 0.005 |
Calf | 60 (15) | 36 (60) | 1.0 | 0.000 |
Body condition score | ||||
1–2.5 | 197 (49.3) | 173 (87.8) | 0.45 (0.21–0.92) | 0.032 |
3–5 | 203 (50.8) | 191 (94.1) | 1.0 | - |
Arbovirus | Animal-Level Seroprevalence | Herd-Level Seroprevalence | ||
---|---|---|---|---|
No. of Seropositive Cattle | % Seroprevalence | No. of Seropositive Herds | % Seroprevalence | |
Rift Valley fever | 62 | 15.5 | 24 | 70.6 |
Bluetongue | 366 | 91.5 | 34 | 100 |
Epizootic hemorrhagic disease | 364 | 91 | 34 | 100 |
Bluetongue–Epizootic hemorrhagic dual exposure | 348 | 87 | 34 | 100 |
Bluetongue–Rift Valley fever dual exposure | 62 | 15.5 | 24 | 70.6 |
Rift Valley fever–Epizootic hemorrhagic disease dual exposure | 59 | 14.8 | 24 | 70.6 |
RVFV–BTV–EHDV triple exposure | 59 | 14.8 | 24 | 70.6 |
Risk Factor and Category | Rift Valley Fever Virus | Bluetongue Virus | Epizootic Hemorrhagic Disease Virus | |||
---|---|---|---|---|---|---|
Adjusted OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value | |
Age of owner | ||||||
19–29 | 0.83 (0.35–1.87) | 0.657 | 1.23 (0.28–5.85) | 0.787 | ||
30–39 | 0.16 (0.04–0.48) | 0.004 | 0.09 (0.02–0.38) | 0.002 | ||
40–49 | 0.66 (0.31–1.39) | 0.280 | 0.6 (0.17–2.04) | 0.413 | ||
50–59 | 0.61 (0.25–1.42) | 0.267 | 3.08 (0.70–16.69) | 0.153 | ||
>60 | 1.0 | 0.014 | 1.0 | 0.193 | ||
Sex of animal | ||||||
Female | 5.55 (2.16–18.90) | 0.001 | ||||
Male | 1.0 | - | ||||
Age of animal | ||||||
Adult | 3.94 (1.35–16.82) | 0.028 | 180.03 (45.11–1081.51) | 0.000 | 26.83 (11.26–71.84) | 0.000 |
Young | 0.55 (0.03–4.62) | 0.618 | 6.49 (2.07–25.67) | 0.003 | 4.27 (1.55–13.94) | 0.008 |
Calf | 1.0 | 0.003 | 1.0 | 0.000 | 1.0 | 0.000 |
BCS | ||||||
1–2.5 | 0.51 (0.22–1.13) | 0.103 | ||||
3–5 | 1.0 | - |
Target Virus | Factors | No. Tested | No. +ve (%) | OR (95% CI) | p-Value |
---|---|---|---|---|---|
Rift Valley fever | |||||
BTV+ | 366 | 62 (16.9) | - | - | |
BTV− | 34 | 0 (0) | - | ||
EHDV+ | 364 | 59 (16.2) | 2.13 (0.73–9.05) | 0.223 | |
EHDV− | 36 | 3 (8.3) | - | ||
Bluetongue | |||||
EHDV+ | 364 | 348 (95.6) | 21.75 (9.64–50.48) | 0.000 | |
EHDV− | 36 | 18 (50) | - | ||
RVFV+ | 62 | 62 (100) | 1.293440 × 107 (2.53 × 10−11 6.81 × 10112) | 0.984 | |
RVFV− | 338 | 304 (89.9) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiuya, T.; Fèvre, E.M.; Okumu, N.O.; Abdi, A.M.; Junglen, S.; Borgemeister, C. Exposure to Arboviruses in Cattle: Seroprevalence of Rift Valley Fever, Bluetongue, and Epizootic Hemorrhagic Disease Viruses and Risk Factors in Baringo County, Kenya. Pathogens 2024, 13, 613. https://doi.org/10.3390/pathogens13080613
Chiuya T, Fèvre EM, Okumu NO, Abdi AM, Junglen S, Borgemeister C. Exposure to Arboviruses in Cattle: Seroprevalence of Rift Valley Fever, Bluetongue, and Epizootic Hemorrhagic Disease Viruses and Risk Factors in Baringo County, Kenya. Pathogens. 2024; 13(8):613. https://doi.org/10.3390/pathogens13080613
Chicago/Turabian StyleChiuya, Tatenda, Eric M. Fèvre, Noah O. Okumu, Abdullahi M. Abdi, Sandra Junglen, and Christian Borgemeister. 2024. "Exposure to Arboviruses in Cattle: Seroprevalence of Rift Valley Fever, Bluetongue, and Epizootic Hemorrhagic Disease Viruses and Risk Factors in Baringo County, Kenya" Pathogens 13, no. 8: 613. https://doi.org/10.3390/pathogens13080613
APA StyleChiuya, T., Fèvre, E. M., Okumu, N. O., Abdi, A. M., Junglen, S., & Borgemeister, C. (2024). Exposure to Arboviruses in Cattle: Seroprevalence of Rift Valley Fever, Bluetongue, and Epizootic Hemorrhagic Disease Viruses and Risk Factors in Baringo County, Kenya. Pathogens, 13(8), 613. https://doi.org/10.3390/pathogens13080613