Persistently Elevated Expression of Systemic, Soluble Co-Inhibitory Immune Checkpoint Molecules in People Living with HIV before and One Year after Antiretroviral Therapy
Abstract
:1. Introduction
2. Methods
3. Results
3.1. CD4+ Cell Counts and Viral Loads
3.2. Comparison of Plasma Concentrations of the Test Soluble Co-Inhibitory Immune Checkpoints between PLWH and Control Participants, as well as before and after ART
3.3. Impact of Disease Severity on the Plasma Concentrations of the Soluble Co-Inhibitory Immune Checkpoints
3.4. Effects of Tobacco Usage on the Plasma Concentrations of the Soluble Co-Inhibitory Immune Checkpoints in PLWH before and after ART
3.5. Correlations between the Plasma Concentrations of the Various Soluble Co-Inhibitory Immune Checkpoints before and after ART
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
3TC | lamivudine |
AIDS | acquired immunodeficiency syndrome |
ART | antiretroviral therapy |
CTLA-4 | cytotoxic T-lymphocyte-associated protein 4 |
EFV | efavirenz |
HIV | Human immunodeficiency virus |
ICM | immune checkpoint molecules |
IFN-γ | interferon gamma |
IL | interleukin |
IQR | interquartile range |
LAG-3 | lymphocyte-activation gene 3 protein |
mAb | monoclonal antibody |
ng | nanogram |
PD-1 | programmed cell death protein 1 |
PD-L1 | programmed cell death protein ligand 1 |
pg | picogram |
PLWH | people living with HIV |
sICM | soluble immune checkpoint molecules |
TDF | tenofovir disoproxil fumarate |
TIM-3 | T cell immunoglobulin and mucin-domain 3 |
Tregs | regulatory T cells |
References
- Vidya Vijayan, K.K.; Karthigeyan, K.P.; Tripathi, S.P.; Hanna, L.E. Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front. Immunol. 2017, 8, 580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ho, D.D.; Neumann, A.U.; Perelson, A.S.; Chen, W.; Leonard, J.M.; Markowitz, M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995, 373, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.S.; Cox, M.A.; Zajac, A.J. T-cell exhaustion: Characteristics, causes and conversion. Immunology 2010, 129, 474–481. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lurain, K.; Ramaswami, R.; Yarchoan, R.; Uldrick, T.S. Anti-PD-1 and anti-PD-L1 monoclonal antibodies in people living with HIV and cancer. Curr. HIV/AIDS Rep. 2020, 17, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer 2019, 18, 155. [Google Scholar] [CrossRef] [PubMed]
- Blank, C.U.; Haining, W.N.; Held, W.; Hogan, P.G.; Kallies, A.; Lugli, E.; Lynn, R.C.; Philip, M.; Rao, A.; Restifo, N.P.; et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 2019, 19, 665–674. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wykes, M.N.; Lewin, S.R. Immune checkpoint blockade in infectious diseases. Nat. Rev. Immunol. 2018, 18, 91–104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gubser, C.; Chiu, C.; Lewin, S.R.; Rasmussen, T.A. Immune checkpoint blockade in HIV. EBioMedicine 2022, 76, 103840. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahmadzadeh, M.; Johnson, L.A.; Heemskerk, B.; Wunderlich, J.R.; Dudley, M.E.; White, D.E.; Rosenberg, S.A. Tumour antigen-specific CD8 T cells infiltrating the tumour express high levels of PD-1 and are functionally impaired. Blood 2009, 114, 1537–1544. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marra, A.; Scognamiglio, G.; Peluso, I.; Botti, G.; Fusciello, C.; Filippelli, A.; Ascierto, P.A.; Pepe, S.; Sabbatino, F. Immune Checkpoint Inhibitors in Melanoma and HIV Infection. Open AIDS J. 2017, 11, 91–100. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gu, D.; Ao, X.; Yang, Y.; Chen, Z.; Xu, X. Soluble immune checkpoints in cancer: Production, function and biological significance. J. Immunother. Cancer 2018, 6, 132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Machiraju, D.; Wiecken, M.; Lang, N.; Hülsmeyer, I.; Roth, J.; Schank, T.E.; Eurich, R.; Halama, N.; Enk, A.; Hassel, J.C. Soluble immune checkpoints and T-cell subsets in blood as biomarkers for resistance to immunotherapy in melanoma patients. Oncoimmunology 2021, 10, 1926762. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gide, T.N.; Paver, E.C.; Yaseen, Z.; Maher, N.; Adegoke, N.; Menzies, A.M.; da Silva, I.P.; Wilmott, J.S.; Long, G.V.; Scolyer, R.A. Lag-3 expression and clinical outcomes in metastatic melanoma patients treated with combination anti-lag-3 + anti-PD-1-based immunotherapies. Oncoimmunology 2023, 12, 2261248. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benowitz, N.L. Smoking cessation trials targeted to racial and economic minority groups. JAMA 2002, 288, 497–499. [Google Scholar] [CrossRef] [PubMed]
- Avendaño-Ortiz, J.; Rubio-Garrido, M.; Lozano-Rodríguez, R.; Del Romero, J.; Rodríguez, C.; Moreno, S.; Aguirre, L.A.; Holguín, Á.; López-Collazo, E. Soluble PD-L1: A potential immune marker for HIV-1 infection and virological failure. Medicine 2020, 99, e20065. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zilber, E.; Martin, G.E.; Willberg, C.B.; Fox, J.; Nwokolo, N.; Fidler, S.; Frater, J. CHERUB Investigators. Soluble plasma programmed death 1 (PD-1) and Tim-3 in primary HIV infection. AIDS 2019, 33, 1253–1256. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Y.; Schou, M.D.; McMahon, J.H.; Deeks, S.G.; Fromentin, R.; Chomont, N.; Wykes, M.N.; Rasmussen, T.A.; Lewin, S.R. Soluble immune checkpoints as correlates for HIV persistence and T cell function in people with HIV on antiretroviral therapy. Front. Immunol. 2023, 14, 1123342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, L.; Xu, K.; Xiao, Q.; Tuo, L.; Luo, T.; Wang, S.; Yang, R.; Zhang, F.; Yang, X. Cellular and molecular insights into incomplete immune recovery in HIV/AIDS patients. Front. Immunol. 2023, 14, 1152951. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, H.; Liao, X.; Kang, Y. Tregs: Where We Are and What Comes Next? Front. Immunol. 2017, 8, 1578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rocco, J.; Mellors, J.W.; Macatangay, B.J. Regulatory T cells: The ultimate HIV reservoir? J. Virus Erad. 2018, 4, 209–214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Acharya, N.; Sabatos-Peyton, C.; Anderson, A.C. Tim-3 finds its place in the cancer immunotherapy landscape. J. Immunother. Cancer 2020, 8, e000911. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gay, C.L.; Bosch, R.J.; McKhann, A.; Moseley, K.F.; Wimbish, C.L.; Hendrickx, S.M.; Messer, M.; Furlong, M.; Campbell, D.M.; A5370 Team; et al. Suspected immune-related adverse events with an anti-PD-1 inhibitor in otherwise healthy people with HIV. J. Acquir. Immune Defic. Syndr. 2021, 87, e234–e236. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gay, C.L.; Bosch, R.J.; Ritz, J.; Hataye, J.M.; Aga, E.; Tressler, R.L.; Mason, S.W.; Hwang, C.K.; Grasela, D.M. AIDS Clinical Trials 5326 Study Team; et al. Clinical trial of the anti-PD-L1 antibody BMS-936559 in HIV-1 infected participants on suppressive antiretroviral therapy. J. Infect. Dis. 2017, 215, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Virot, E.; Duclos, A.; Adelaide, L.; Miailhes, P.; Hot, A.; Ferry, T.; Seve, P. Autoimmune diseases and HIV infection: A cross-sectional study. Medicine 2017, 96, e5769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Julg, B.; Stephenson, K.E.; Wagh, K.; Tan, S.C.; Zash, R.; Walsh, S.; Ansel, J.; Kanjilal, D.; Nkolola, J.; Walker-Sperling, V.E.K.; et al. Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: A phase 1 clinical trial. Nat. Med. 2022, 28, 1288–1296. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Das, M.; Zhu, C.; Kuchroo, V.K. Tim-3 and its role in regulating anti-tumour immunity. Immunol. Rev. 2017, 276, 97–111. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanson, A.; Elpek, K.; Duong, E.; Shallberg, L.; Fan, M.; Johnson, C.; Wallace, M.; Mabry, G.R.; Sazinsky, S.; Pepper, L.; et al. ICOS agonism by JTX-2011 (vopratelimab) requires initial T cell priming and Fc cross-linking for optimal T cell activation and anti-tumour immunity in preclinical models. PLoS ONE 2020, 15, e0239595. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sasikumar, P.G.; Ramachandra, M. Small molecule agents targeting PD-1 checkpoint pathway for cancer immunotherapy: Mechanisms of action and other considerations for their advanced development. Front. Immunol. 2022, 13, 752065. [Google Scholar] [CrossRef] [PubMed]
- Helleberg, M.; Afzal, S.; Kronborg, G.; Larsen, C.S.; Pedersen, G.; Pedersen, C.; Gerstoft, J.; Nordestgaard, B.G.; Obel, N. Mortality attributable to smoking among HIV-1-infected individuals: A nationwide, population-based cohort study. Clin. Infect. Dis. 2013, 56, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Hile, S.J.; Feldman, M.B.; Alexy, E.R.; Irvine, M.K. Recent tobacco smoking is associated with poor HIV medical outcomes among HIV-infected individuals in New York. AIDS Behav. 2016, 20, 1722–1729. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Valiathan, R.; Miguez, M.J.; Patel, B.; Arheart, K.L.; Asthana, D. Tobacco smoking increases immune activation and impairs T-cell function in HIV infected patients on antiretrovirals: A cross-sectional pilot study. PLoS ONE 2014, 9, e97698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Variable | PLWH before ART N = 68 | PLWH at 12 Months N = 68 | p-Value |
---|---|---|---|
CD4 count (cells/mm3) | 184 (74–317) * | 432 (245–582) | <0.0001 |
CD4 percentage (%) | 11.07 (6.47–18.59) * | 20.22 (13.24–31.01) | <0.0001 |
CD4:CD8 ratio | 0.23 (0.09–0.42) * | 0.48 (0.28–0.85) | <0.0001 |
HIV VL (copies/mL) | 166,000 (27,000–560,000) | 50 | <0.0001 |
HIV VL (log) | 5.2 (4.2–5.7) | 1.7 | <0.0001 |
Variable | PLWH before ART N = 68 | PLWH at 12 Months N = 68 | Control N = 15 | p-Value | |
---|---|---|---|---|---|
Pre-ART vs. Controls | On ART vs. Controls | ||||
CTLA-4 | 316.84 (106.92–622.97) | 342.50 (93.22–639.99) | 0.74 (0.73–1323.79) | 0.0657 | 0.0367 |
LAG-3 | 213,191.10 (154,145.20–256,134.90) | 232,113.60 (178,068.40–319,052.60) | 4293.78 (162.81–45,602.51) | 0.0001 | 0.0001 |
PD-1 | 3486.50 (2013.10–6240.06) | 3571.70 (1670.56–6515.27) | 849.36 (154.96–1869.33) | 0.0011 | 0.0033 |
PD-L1 | 628.37 (270.09–1094.94) | 771.59 (235.26–1316.53) | 101.02 (33.26–294.59) | 0.0030 | 0.0017 |
TIM-3 | 3450.73 (2449.28–4884.63) | 2817.07 (2141.62–3762.79) | 128.14 (4.90–2936.02) | 0.0001 | 0.0011 |
Variable | Non-Users N = 20 | Tobacco Users N = 12 | p-Value |
---|---|---|---|
CTLA-4 | 315.91 (93.22–692.07) | 370.27 (152.30–779.56) | 0.3485 |
LAG-3 | 226,348.30 (179,752.60–277,634.30) | 203,324.00 (187,789.00–283,333.90) | 0.4381 |
PD-1 | 3289.34 (1490.30–5864.21) | 4082.90 (2221.17–7413.38) | 0.1959 |
PD-L1 | 568.52 (267.93–1281.22) | 776.14 (369.52–1259.48) | 0.3064 |
TIM-3 | 2565.10 (1932.08–3079.84) | 3330.80 (2693.80–3893.81) | 0.0169 |
CTLA-4 | LAG-3 | PD-1 | PD-L1 | TIM-3 | |
---|---|---|---|---|---|
CTLA-4 | 1.0 | ||||
LAG-3 | 0.450 (0.0001) | 1.0 | |||
PD-1 | 0.907 (<0.0001) | 0.463 (0.0001) | 1.0 | ||
PD-L1 | 0.895 (<0.0001) | 0.437 (0.0002) | 0.873 (<0.0001) | 1.0 | |
TIM-3 | 0.081 (0.5100) | −0.053 (0.6668) | 0.120 (0.3306) | 0.088 (0.4769) | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labuschagne Naidoo, R.-B.; Steel, H.C.; Theron, A.J.; Anderson, R.; Tintinger, G.R.; Rossouw, T.M. Persistently Elevated Expression of Systemic, Soluble Co-Inhibitory Immune Checkpoint Molecules in People Living with HIV before and One Year after Antiretroviral Therapy. Pathogens 2024, 13, 540. https://doi.org/10.3390/pathogens13070540
Labuschagne Naidoo R-B, Steel HC, Theron AJ, Anderson R, Tintinger GR, Rossouw TM. Persistently Elevated Expression of Systemic, Soluble Co-Inhibitory Immune Checkpoint Molecules in People Living with HIV before and One Year after Antiretroviral Therapy. Pathogens. 2024; 13(7):540. https://doi.org/10.3390/pathogens13070540
Chicago/Turabian StyleLabuschagne Naidoo, Robyn-Brooke, Helen C. Steel, Annette J. Theron, Ronald Anderson, Gregory R. Tintinger, and Theresa M. Rossouw. 2024. "Persistently Elevated Expression of Systemic, Soluble Co-Inhibitory Immune Checkpoint Molecules in People Living with HIV before and One Year after Antiretroviral Therapy" Pathogens 13, no. 7: 540. https://doi.org/10.3390/pathogens13070540
APA StyleLabuschagne Naidoo, R.-B., Steel, H. C., Theron, A. J., Anderson, R., Tintinger, G. R., & Rossouw, T. M. (2024). Persistently Elevated Expression of Systemic, Soluble Co-Inhibitory Immune Checkpoint Molecules in People Living with HIV before and One Year after Antiretroviral Therapy. Pathogens, 13(7), 540. https://doi.org/10.3390/pathogens13070540