Catalytic Differences between Flavohemoglobins of Giardia intestinalis and E. coli
Abstract
1. Introduction
2. Procedures
2.1. Protein Expression
2.2. Nitric Oxide Dioxygenase Assays
2.3. Optical Titrations
2.4. NADH Oxidase Assays
2.5. Cytochrome c Reductase Assays
3. Results and Discussion
3.1. Nitric Oxide Dioxygenase Assays and Inhibition Studies
3.2. NADH Oxidase and Cytochrome c Reductase Activities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ermler, U.; Siddiqui, R.A.; Cramm, R.; Friedrich, B. Crystal structure of the flavohemoglobin from Alcaligenes eutrophus at 1.75 A resolution. EMBO J. 1995, 14, 6067–6077. [Google Scholar] [CrossRef] [PubMed]
- Gardner, P.R.; Gardner, A.M.; Martin, L.A.; Salzman, A.L. Nitric oxide dioxygenase: An enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. USA 1998, 95, 10378–10383. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Riggs, A.F. Yeast flavohemoglobin is an ancient protein related to globins and a reductase family. Proc. Natl. Acad. Sci. USA 1992, 89, 5015–5019. [Google Scholar] [CrossRef] [PubMed]
- Iijima, M.; Shimizu, H.; Tanaka, Y.; Urushihara, H. Identification and characterization of two flavohemoglobin genes in Dictyostelium discoideum. Cell Struct. Funct. 2000, 25, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, N.; Cooper, C.E.; Poole, R.K. Spectroscopic studies on an oxygen-binding haemoglobin-like flavohaemoprotein from Escherichia coli. Biochem. J. 1992, 288 Pt 2, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Rafferty, S.; Luu, B.; March, R.E.; Yee, J. Giardia lamblia encodes a functional flavohemoglobin. Biochem. Biophys. Res. Commun. 2010, 399, 347–351. [Google Scholar] [CrossRef]
- Mastronicola, D.; Testa, F.; Forte, E.; Bordi, E.; Pucillo, L.P.; Sarti, P.; Giuffrè, A. Flavohemoglobin and nitric oxide detoxification in the human protozoan parasite Giardia intestinalis. Biochem. Biophys. Res. Commun. 2010, 399, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Mukai, M.; Mills, C.E.; Poole, R.K.; Yeh, S.R. Flavohemoglobin, a globin with a peroxidase-like catalytic site. J. Biol. Chem. 2001, 276, 7272–7277. [Google Scholar] [CrossRef]
- Lukaszewicz, B.; McColl, E.; Yee, J.; Rafferty, S.; Couture, M. Resonance Raman studies on the flavohemoglobin of the protist Giardia intestinalis: Evidence of a type I/II-peroxidase-like heme environment and roles of the active site distal residues. J. Biol. Inorg. Chem. 2017, 22, 1099–1108. [Google Scholar] [CrossRef]
- Helmick, R.A.; Fletcher, A.E.; Gardner, A.M.; Gessner, C.R.; Hvitved, A.N.; Gustin, M.C.; Gardner, P.R. Imidazole antibiotics inhibit the nitric oxide dioxygenase function of microbial flavohemoglobin. Antimicrob. Agents Chemother. 2005, 49, 1837–1843. [Google Scholar] [CrossRef] [PubMed]
- Crowley, E.L.; Rafferty, S.P. Review of lactose-driven auto-induction expression of isotope-labelled proteins. Protein Expr. Purif. 2019, 157, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.M.; Martin, L.A.; Gardner, P.R.; Dou, Y.; Olson, J.S. Steady-state and transient kinetics of Escherichia coli nitric-oxide dioxygenase (flavohemoglobin). The B10 tyrosine hydroxyl is essential for dioxygen binding and catalysis. J. Biol. Chem. 2000, 275, 12581–12589. [Google Scholar] [CrossRef] [PubMed]
- Ignarro, L.J.; Fukuto, J.M.; Griscavage, J.M.; Rogers, N.E.; Byrns, R.E. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: Comparison with enzymatically formed nitric oxide from L-arginine. Proc. Natl. Acad. Sci. USA 1993, 90, 8103–8107. [Google Scholar] [CrossRef] [PubMed]
- Ilari, A.; Bonamore, A.; Farina, A.; Johnson, K.A.; Boffi, A. The X-ray structure of ferric Escherichia coli flavohemoglobin reveals an unexpected geometry of the distal heme pocket. J. Biol. Chem. 2002, 277, 23725–23732. [Google Scholar] [CrossRef] [PubMed]
- Poole, R.K.; Rogers, N.J.; D’mello, R.A.M.; Hughes, M.N.; Orii, Y. Escherichia coli flavohaemoglobin (Hmp) reduces cytochrome c and Fe(III)-hydroxamate K by electron transfer from NADH via FAD: Sensitivity of oxidoreductase activity to haem-bound dioxygen. Microbiology 1997, 143, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Mastronicola, D.; Falabella, M.; Forte, E.; Testa, F.; Sarti, P.; Giuffrè, A. Antioxidant defence systems in the protozoan pathogen Giardia intestinalis. Mol. Biochem. Parasitol. 2016, 206, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Bonamore, A.; Gentili, P.; Ilari, A.; Schininà, M.E.; Boffi, A. Escherichia coli flavohemoglobin is an efficient alkylhydroperoxide reductase. J. Biol. Chem. 2003, 278, 22272–22277. [Google Scholar] [CrossRef] [PubMed]
- Ma’ayeh, S.Y.; Knörr, L.; Svärd, S.G. Transcriptional profiling of Giardia intestinalis in response to oxidative stress. Int. J. Parasitol. 2015, 45, 925–938. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Corker, H.; Orii, Y.; Poole, R.K. Escherichia coli Hmp, an ‘oxygen-binding flavohaemoprotein’, produces superoxide anion and self-destructs. Arch. Microbiol. 2004, 182, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Membrillo-Hernández, J.; Ioannidis, N.; Poole, R.K. The flavohaemoglobin (HMP) of Escherichia coli generates superoxide in vitro and causes oxidative stress in vivo. FEBS Lett. 1996, 382, 141–144. [Google Scholar] [CrossRef] [PubMed]
gFlHb | Hmp | |||||
---|---|---|---|---|---|---|
Compound | Ki (μM) | f | TN, s−1 | Ki (μM) | f | TN, s−1 |
Miconazole | 10 ± 2 | 1 | 22 ± 1 | 0.27 ± 0.07 | 1 | 33 ± 3 |
1-methylimidazole | 1200 ± 300 | 1 | 25 ± 1 | 1400 ± 250 | 1 | 38 ± 2 |
Imidazole | 20 ± 6 | 0.78 ± 0.05 | 22 ± 1 | 69 ± 10 | 0.84 ± 0.02 | 33 ± 1 |
Nitrite | 32 ± 12 | 0.68 ± 0.05 | 23 ± 1 | nd | nd | nd |
Specific Activity, s−1 | ||
---|---|---|
Assay | gFlHb | Hmp |
NADH Oxidase | 0.33 ± 0.09 | 0.87 ± 0.08 |
NADH Oxidase + 1 mM H2O2 | 0.7 ± 0.2 | 0.6 ± 0.1 |
Cytochrome c reductase | 1.81 ± 0.06 | 1.8 ± 0.1 |
Cytochrome c reductase + SOD | 1.8 ± 0.1 | 1.50 ± 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hill, S.; Decorso, I.; Nezamololama, N.; Babaei, Z.; Rafferty, S.P. Catalytic Differences between Flavohemoglobins of Giardia intestinalis and E. coli. Pathogens 2024, 13, 480. https://doi.org/10.3390/pathogens13060480
Hill S, Decorso I, Nezamololama N, Babaei Z, Rafferty SP. Catalytic Differences between Flavohemoglobins of Giardia intestinalis and E. coli. Pathogens. 2024; 13(6):480. https://doi.org/10.3390/pathogens13060480
Chicago/Turabian StyleHill, Sarah, Isabelle Decorso, Novin Nezamololama, Zahra Babaei, and Steven Patrick Rafferty. 2024. "Catalytic Differences between Flavohemoglobins of Giardia intestinalis and E. coli" Pathogens 13, no. 6: 480. https://doi.org/10.3390/pathogens13060480
APA StyleHill, S., Decorso, I., Nezamololama, N., Babaei, Z., & Rafferty, S. P. (2024). Catalytic Differences between Flavohemoglobins of Giardia intestinalis and E. coli. Pathogens, 13(6), 480. https://doi.org/10.3390/pathogens13060480