Biology, Control and Zoonotic Role of Disease Vectors
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Chala, B.; Hamde, F. Emerging and Re-emerging Vector-Borne Infectious Diseases and the Challenges for Control: A Review. Front. Public Health 2021, 9, 715759. [Google Scholar] [CrossRef] [PubMed]
- Franklinos, L.H.; Jones, K.E.; Redding, D.W.; Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 2019, 19, e302–e312. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Enfermedades Transmitidas por Vectores. Available online: https://www.who.int/es/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 30 May 2023).
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huntington, M.K.; Allison, J.; Nair, D. Emerging Vector-Borne Diseases. Am. Fam. Physician 2016, 94, 551–557. [Google Scholar] [PubMed]
- Semenza, J.C.; Suk, J.E. Vector-borne diseases and climate change: A European perspective. FEMS Microbiol. Lett. 2018, 365, fnx244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.-M.; Li, N.; Ren, C.-P.; Peng, Z.-Y.; Lu, H.-Z.; Li, D.; Wu, X.-Y.; Zhou, Z.-X.; Deng, J.-Y.; Zheng, Z.-H.; et al. Sterility of Aedes albopictus by X-ray Irradiation as an Alternative to γ-ray Irradiation for the Sterile Insect Technique. Pathogens 2023, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Calvez, E.; Miot, E.F.; Keosenhom, S.; Vungkyly, V.; Viengphouthong, S.; Bounmany, P.; Brey, P.T.; Marcombe, S.; Grandadam, M. Low Transmission of Chikungunya Virus by Aedes aegypti from Vientiane Capital, Lao PDR. Pathogens 2023, 12, 31. [Google Scholar] [CrossRef] [PubMed]
- Leandro, A.D.S.; Ayala, M.J.C.; Lopes, R.D.; Martins, C.A.; Maciel-De-Freitas, R.; Villela, D.A.M. Entomo-Virological Aedes aegypti Surveillance Applied for Prediction of Dengue Transmission: A Spatio-Temporal Modeling Study. Pathogens 2022, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, T.; Higueros, A.; Valsecchi, A.; Realp, E.; Vila, C.; Ortiz, A.; Peracho, V.; Figuerola, J. Effectiveness of the Modification of Sewers to Reduce the Reproduction of Culex pipiens and Aedes albopictus in Barcelona, Spain. Pathogens 2022, 11, 423. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Gómez, M.; Miranda, M.A.; Bueno-Marí, R. To Kill or to Repel Mosquitoes? Exploring Two Strategies for Protecting Humans and Reducing Vector-Borne Disease Risks by Using Pyrethroids as Spatial Repellents. Pathogens 2021, 10, 1171. [Google Scholar] [CrossRef] [PubMed]
- Morchón, R.; Montoya-Alonso, J.A.; Rodríguez-Escolar, I.; Carretón, E. What Has Happened to Heartworm Disease in Europe in the Last 10 Years? Pathogens 2022, 11, 1042. [Google Scholar] [CrossRef] [PubMed]
- González, M.A.; Bravo-Barriga, D.; Rodríguez-Sosa, M.A.; Rueda, J.; Frontera, E.; Alarcón-Elbal, P.M. Species Di-versity, Habitat Distribution, and Blood Meal Analysis of Haematophagous Dipterans Collected by CDC-UV Light Traps in the Dominican Republic. Pathogens 2022, 11, 714. [Google Scholar] [CrossRef] [PubMed]
- Guillot, C.; Bouchard, C.; Buhler, K.; Dumas, A.; Milord, F.; Ripoche, M.; Pelletier, R.; Leighton, P.A. Sentinel Surveillance Contributes to Tracking Lyme Disease Spatiotemporal Risk Trends in Southern Quebec, Canada. Pathogens 2022, 11, 531. [Google Scholar] [CrossRef] [PubMed]
- Alevi, K.C.C.; de Oliveira, J.; da Silva, R.D.; Galvão, C. Trends in Taxonomy of Chagas Disease Vectors (Hemiptera, Reduviidae, Triatominae): From Linnaean to Integrative Taxonomy. Pathogens 2021, 10, 1627. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morchón, R.; Bueno-Marí, R.; Bravo-Barriga, D. Biology, Control and Zoonotic Role of Disease Vectors. Pathogens 2023, 12, 797. https://doi.org/10.3390/pathogens12060797
Morchón R, Bueno-Marí R, Bravo-Barriga D. Biology, Control and Zoonotic Role of Disease Vectors. Pathogens. 2023; 12(6):797. https://doi.org/10.3390/pathogens12060797
Chicago/Turabian StyleMorchón, Rodrigo, Rubén Bueno-Marí, and Daniel Bravo-Barriga. 2023. "Biology, Control and Zoonotic Role of Disease Vectors" Pathogens 12, no. 6: 797. https://doi.org/10.3390/pathogens12060797
APA StyleMorchón, R., Bueno-Marí, R., & Bravo-Barriga, D. (2023). Biology, Control and Zoonotic Role of Disease Vectors. Pathogens, 12(6), 797. https://doi.org/10.3390/pathogens12060797