Serological Evidence of Zika Virus Circulation in Burkina Faso
Abstract
:1. Introduction
2. Results
2.1. Serological Screening for ZIKV and DENV in Blood Donor
2.2. Molecular Screening for ZIKV and DENV in Samples from Febrile Patients and Aedes aegypti Mosquitoes
3. Discussion
4. Materials and Methods
4.1. Samples
4.1.1. Blood Donors
4.1.2. Febrile Patients
4.1.3. Mosquito Sampling
4.2. Competitive Enzyme-Linked Immunosorbent Assay
4.3. Luminex
4.4. Seroneutralization Assays
4.5. RT-PCR ZIKV and DENV
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, A.; Lal, S.K. Zika Virus: Transmission, Detection, Control, and Prevention. Front. Microbiol. 2017, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Tinto, B.; Kania, D.; Samdapawindé Kagone, T.; Dicko, A.; Traore, I.; De Rekeneire, N.; Bicaba, B.W.; Hien, H.; Van de Perre, P.; Simonin, Y.; et al. Dengue Virus Circulation in West Africa: An Emerging Public Health Issue. Med. Sci. 2022, 38, 152–158. [Google Scholar] [CrossRef]
- Sow, A.; Loucoubar, C.; Diallo, D.; Faye, O.; Ndiaye, Y.; Senghor, C.S.; Dia, A.T.; Faye, O.; Weaver, S.C.; Diallo, M.; et al. Concurrent Malaria and Arbovirus Infections in Kedougou, Southeastern Senegal. Malar. J. 2016, 15, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marbán-Castro, E.; Goncé, A.; Fumadó, V.; Romero-Acevedo, L.; Bardají, A. Zika Virus Infection in Pregnant Women and Their Children: A Review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 265, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Baud, D.; Gubler, D.J.; Schaub, B.; Lanteri, M.C.; Musso, D. An Update on Zika Virus Infection. Lancet 2017, 390, 2099–2109. [Google Scholar] [CrossRef] [Green Version]
- Katzelnick, L.C.; Zambrana, J.V.; Elizondo, D.; Collado, D.; Garcia, N.; Arguello, S.; Mercado, J.C.; Miranda, T.; Ampie, O.; Mercado, B.L.; et al. Dengue and Zika Virus Infections in Children Elicit Cross-Reactive Protective and Enhancing Antibodies That Persist Long Term. Sci. Transl. Med. 2021, 13, eabg9478. [Google Scholar] [CrossRef] [PubMed]
- Gubler, D.J.; Vasilakis, N.; Musso, D. History and Emergence of Zika Virus. J. Infect. Dis. 2017, 216, S860–S867. [Google Scholar] [CrossRef] [Green Version]
- Duffy, M.R.; Chen, T.-H.; Hancock, W.T.; Powers, A.M.; Kool, J.L.; Lanciotti, R.S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; et al. Zika Virus Outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 2009, 360, 2536–2543. [Google Scholar] [CrossRef]
- Cao-Lormeau, V.M.; Roche, C.; Teissier, A.; Robin, E.; Berry, A.L.; Mallet, H.P.; Sall, A.A.; Musso, D. Zika Virus, French Polynesia, South Pacific, 2013. Emerg. Infect. Dis. 2014, 20, 1085–1086. [Google Scholar] [CrossRef]
- Brasil, P.; Calvet, G.A.; Siqueira, A.M.; Wakimoto, M.; de Sequeira, P.C.; Nobre, A.; de Souza Borges Quintana, M.; de Mendonça, M.C.L.; Lupi, O.; de Souza, R.V.; et al. Zika Virus Outbreak in Rio de Janeiro, Brazil: Clinical Characterization, Epidemiological and Virological Aspects. PLoS Negl. Trop. Dis. 2016, 10, e0004636. [Google Scholar] [CrossRef]
- Musso, D.; Ko, A.I.; Baud, D. Zika Virus Infection—After the Pandemic. N. Engl. J. Med. 2019, 381, 1444–1457. [Google Scholar] [CrossRef]
- Moore, D.L.; Causey, O.R.; Carey, D.E.; Reddy, S.; Cooke, A.R.; Akinkugbe, F.M.; David-West, T.S.; Kemp, G.E. Arthropod-Borne Viral Infections of Man in Nigeria, 1964-1970. Ann. Trop. Med. Parasitol. 1975, 69, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Silva, S.L.; Chacón-Hernández, S.S.; Moreno-Palacios, E.; Pereyra-Molina, J.Á. Clinical and Differential Diagnosis: Dengue, Chikungunya and Zika. Rev. Médica del Hosp. Gen. México 2018, 81, 146–153. [Google Scholar] [CrossRef]
- Muller, D.A.; Depelsenaire, A.C.I.; Young, P.R. Clinical and Laboratory Diagnosis of Dengue Virus Infection. J. Infect. Dis. 2017, 215, S89–S95. [Google Scholar] [CrossRef]
- Mangada, M.M.; Rothman, A.L. Altered Cytokine Responses of Dengue-Specific CD4 + T Cells to Heterologous Serotypes. J. Immunol. 2005, 175, 2676–2683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katzelnick, L.C.; Narvaez, C.; Arguello, S.; Mercado, B.L.; Collado, D.; Ampie, O.; Elizondo, D.; Miranda, T.; Carillo, F.B.; Mercado, J.C.; et al. Zika Virus Infection Enhances Future Risk of Severe Dengue Disease. Science 2020, 369, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Letizia, A.G.; Pratt, C.B.; Wiley, M.R.; Fox, A.T.; Mosore, M.; Agbodzi, B.; Yeboah, C.; Kumordjie, S.; Di Paola, N.; Assana, K.C.; et al. Retrospective Genomic Characterization of a 2017 Dengue Virus Outbreak, Burkina Faso. Emerg. Infect. Dis. 2022, 28, 1198–1210. [Google Scholar] [CrossRef]
- Ridde, V.; Agier, I.; Bonnet, E.; Carabali, M.; Dabiré, K.R.; Fournet, F.; Ly, A.; Meda, I.B.; Parra, B. Presence of Three Dengue Serotypes in Ouagadougou (Burkina Faso): Research and Public Health Implications. Infect. Dis. Poverty 2016, 5, 23. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.K.; Seydou, Y.; Carabali, M.; Barro, A.; Dahourou, D.L.; Lee, K.S.; Nikiema, T.; Namkung, S.; Lee, J.S.; Shin, M.Y.; et al. Clinical and Epidemiologic Characteristics Associated with Dengue during and Outside the 2016 Outbreak Identified in Health Facility-Based Surveillance in Ouagadougou, Burkina Faso. PLoS Negl. Trop. Dis. 2019, 13, e0007882. [Google Scholar] [CrossRef]
- Jaenisch, T.; Tam, D.T.H.; Kieu, N.T.T.; Ngoc, T.; Nam, N.T.; Van Kinh, N.; Yacoub, S.; Chanpheaktra, N.; Kumar, V.; See, L.L.C.; et al. Clinical Evaluation of Dengue and Identification of Risk Factors for Severe Disease: Protocol for a Multicentre Study in 8 Countries. BMC Infect. Dis. 2016, 16, 120. [Google Scholar] [CrossRef] [Green Version]
- Franco, L.; di Caro, A.; Carletti, F.; Vapalahti, O.; Renaudat, C.; Zeller, H.; Tenorio, A. Recent Expansion of Dengue Virus Serotype 3 in West Africa. Eurosurveillance 2010, 15, 19490. [Google Scholar] [CrossRef]
- Amarasinghe, A.; Kuritsky, J.N.; William Letson, G.; Margolis, H.S. Dengue Virus Infection in Africa. Emerg. Infect. Dis. 2011, 17, 1349–1354. [Google Scholar] [CrossRef] [PubMed]
- Phoutrides, E.K.; Coulibaly, M.B.; George, C.M.; Sacko, A.; Traore, S.; Bessoff, K.; Wiley, M.R.; Kolivras, K.N.; Adelman, Z.; Traore, M.; et al. Dengue Virus Seroprevalence among Febrile Patients in Bamako, Mali: Results of a 2006 Surveillance Study. Vector-Borne Zoonotic Dis. 2011, 11, 1479–1485. [Google Scholar] [CrossRef] [PubMed]
- Onoja, A.B.; Adeniji, J.A.; Olaleye, O.D. High Rate of Unrecognized Dengue Virus Infection in Parts of the Rainforest Region of Nigeria. Acta Trop. 2016, 160, 39–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagbami, A.H.; Onoja, A.B. Dengue Haemorrhagic Fever: An Emerging Disease in Nigeria, West Africa. J. Infect. Public Health 2018, 11, 757–762. [Google Scholar] [CrossRef]
- Sanou, A.S.; Dirlikov, E.; Sondo, K.A.; Kagoné, T.S.; Yameogo, I.; Sow, H.E.; Adjami, A.G.; Traore, S.M.; Dicko, A.; Tinto, B.; et al. Building Laboratory-Based Arbovirus Sentinel Surveillance Capacity during an Ongoing Dengue Outbreak, Burkina Faso, 2017. Heal. Secur. 2018, 16, S103–S110. [Google Scholar] [CrossRef]
- Brès, P. Données Récentes Apportées Par Les Enquêtes Sérologiques Sur La Prévalence Des Arbovirus En Afrique, Avec Référence Spéciale à La Fièvre Jaune. Bull. World Health Organ. 1970, 43, 223–267. [Google Scholar]
- Marchi, S.; Viviani, S.; Montomoli, E.; Tang, Y.; Boccuto, A.; Vicenti, I.; Zazzi, M.; Sow, S.; Diallo, A.; Idoko, O.T.; et al. Zika Virus in West Africa: A Seroepidemiological Study between 2007 and 2012. Viruses 2020, 12, 641. [Google Scholar] [CrossRef]
- Diarra, I.; Nurtop, E.; Sangaré, A.K.; Sagara, I.; Pastorino, B.; Sacko, S.; Zeguimé, A.; Coulibaly, D.; Fofana, B.; Gallian, P.; et al. Zika Virus Circulation in Mali. Emerg. Infect. Dis. 2020, 26, 945–952. [Google Scholar] [CrossRef]
- Piantadosi, A.; Kanjilal, S. Diagnostic Approach for Arboviral Infections in the United States. J. Clin. Microbiol. 2020, 58, e01926-19. [Google Scholar] [CrossRef]
- Simonin, Y.; Loustalot, F.; Desmetz, C.; Foulongne, V.; Constant, O.; Fournier-Wirth, C.; Leon, F.; Molès, J.P.; Goubaud, A.; Lemaitre, J.M.; et al. Zika Virus Strains Potentially Display Different Infectious Profiles in Human Neural Cells. EBioMedicine 2016, 12, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Tarnagda, Z.; Cissé, A.; Bicaba, B.W.; Diagbouga, S.; Sagna, T.; Ilboudo, A.K.; Tialla, D.; Lingani, M.; Sondo, K.A.; Yougbaré, I.; et al. Dengue Fever in Burkina Faso, 2016. Emerg. Infect. Dis. 2018, 24, 170–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritchie, S.A.; Cortis, G.; Paton, C.; Townsend, M.; Shroyer, D.; Zborowski, P.; Hall-Mendelin, S.; Van Den Hurk, A.F. A Simple Non-Powered Passive Trap for the Collection of Mosquitoes for Arbovirus Surveillance. J. Med. Entomol. 2013, 50, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Meda, N.; Salinas, S.; Kagoné, T.; Simonin, Y.; Van de Perre, P. Zika Virus Epidemic: Africa Should Not Be Neglected. Lancet 2016, 388, 337–338. [Google Scholar] [CrossRef] [Green Version]
- Weger-Lucarelli, J.; Rückert, C.; Chotiwan, N.; Nguyen, C.; Garcia Luna, S.M.; Fauver, J.R.; Foy, B.D.; Perera, R.; Black, W.C.; Kading, R.C.; et al. Vector Competence of American Mosquitoes for Three Strains of Zika Virus. PLoS Negl. Trop. Dis. 2016, 10, e0005101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, R.S.; O’connor, O.; Bersot, M.I.L.; Girault, D.; Dokunengo, M.R.; Pocquet, N.; Dupont-Rouzeyrol, M.; Lourenço-De-oliveira, R. Vector Competence of Aedes Aegypti, Aedes Albopictus and Culex Quinquefasciatus from Brazil and New Caledonia for Three Zika Virus Lineages. Pathogens 2020, 9, 575. [Google Scholar] [CrossRef] [PubMed]
- Katzelnick, L.C.; Gresh, L.; Halloran, M.E.; Mercado, J.C.; Kuan, G.; Gordon, A.; Balmaseda, A.; Harris, E. Antibody-Dependent Enhancement of Severe Dengue Disease in Humans. Science 2017, 358, 929–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HUANG, Y.-M. The Subgenus Stegomyia of Aedes in the Afrotropical Region with Keys to the Species (Diptera: Culicidae). Zootaxa 2004, 700, 1. [Google Scholar] [CrossRef]
- Gillies, M.T.; Coetzee, M. A Supplement to the Anophelinae of the South of the Sahara (Afrotropical Region). Publ. South African Inst. Med. Res. 1987, 55, 1–143. [Google Scholar]
- Gillies, M.T.; De Meillon, B. The Anophelinae of Africa South of the Sahara (Ethiopian Zoogeographical Region). Publ. South African Inst. Med. Res. 1968, 54, 3–343. [Google Scholar]
- Faye, O.; Freire, C.C.M.; Iamarino, A.; Faye, O.; de Oliveira, J.V.C.; Diallo, M.; Zanotto, P.M.A.; Sall, A.A. Molecular Evolution of Zika Virus during Its Emergence in the 20th Century. PLoS Negl. Trop. Dis. 2014, 8, e2636. [Google Scholar] [CrossRef] [Green Version]
- Raulino, R.; Thaurignac, G.; Butel, C.; Villabona-Arenas, C.J.; Foe, T.; Loul, S.; Ndimbo-Kumugo, S.P.; Mbala-Kingebeni, P.; Makiala-Mandanda, S.; Ahuka-Mundeke, S.; et al. Multiplex Detection of Antibodies to Chikungunya, O’nyong-Nyong, Zika, Dengue, West Nile and Usutu Viruses in Diverse Non-Human Primate Species from Cameroon and the Democratic Republic of Congo. PLoS Negl. Trop. Dis. 2021, 15, e0009028. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Q.; Li, X.; Deng, C.L.; Yuan, Z.M.; Zhang, B. Development and Evaluation of One-Step Multiplex Real-Time RT-PCR Assay for Simultaneous Detection of Zika Virus and Chikungunya Virus. J. Med. Virol. 2018, 90, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Gray, E.R.; Heaney, J.; Ferns, R.B.; Sequeira, P.C.; Nastouli, E.; Garson, J.A. Minor Groove Binder Modification of Widely Used TaqMan Hydrolysis Probe for Detection of Dengue Virus Reduces Risk of False-Negative Real-Time PCR Results for Serotype 4. J. Virol. Methods 2019, 268, 17–23. [Google Scholar] [CrossRef] [PubMed]
Luminex Positive N (%) | MNT ZIKV Positive N (%) | |||||
---|---|---|---|---|---|---|
DENV1 NS1 Ab (%) | DENV2 NS1 Ab (%) | DENV3 NS1 Ab (%) | DENV4 NS1 Ab (%) | ZIKV NS1 Ab (%) | ||
Total | 98 (19.56) | 280 (55.88) | 204 (40.71) | 199 (39.77) | 229 (45.39) | 114 (22.75) |
Origin | ||||||
Ouagadougou | 63 (24.60) | 164 (64.06) | 126 (49.21) | 122 (47.65) | 127 (49.60) | 71 (27.73) |
Bobo-Dioulasso | 35 (14.28) | 116 (47.34) | 78 (31.83) | 77 (31.42) | 102 (41.63) | 43 (17.55) |
Gender | ||||||
Male | 69 (17.82) | 223 (57.62) | 158 (40.82) | 159 (41.08) | 187 (48.32) | 90 (23.25) |
Female | 29 (25.43) | 57 (50.0) | 46 (40.34) | 40 (35.08) | 42 (36.84) | 24 (21.05) |
Age | ||||||
18–24 | 28 (16.47) | 81 (47.64) | 53 (31.17) | 56 (32.94) | 63 (37.05) | 27 (15.88) |
25–34 | 37 (18.78) | 106 (53.80) | 79 (40.10) | 70 (35.53) | 92 (46.70) | 45 (22.84) |
35–44 | 25 (26.31) | 67 (70.52) | 55 (57.89) | 55 (57.89) | 54 (56.84) | 31 (32.63) |
45–59 | 8 (20.51) | 26 (66.66) | 17 (43.58) | 18 (46.15) | 20 (51.28) | 11 (28.20) |
ZIKV Antibody Titer | Number of Sample N (%) |
---|---|
15 | 11 (9.64) |
22.5 | 28 (24.56) |
45 | 21 (18.42) |
67.5 | 18 (15.78) |
135 | 14 (12.28) |
202 | 1 (0.87) |
202.5 | 3 (2.63) |
405 | 7 (6.14) |
607.5 | 6 (5.26) |
1215 | 2 (1.75) |
1837.5 | 2 (1.75) |
3675 | 1 (0.87) |
Total | 114 (100) |
Variable | Positive N (%) | Odds Ratio IC95% | p-Value |
---|---|---|---|
Origin | 0.0076 * | ||
Ouagadougou | 71 (27.73) | 1 | |
Bobo-Dioulasso | 43 (17.55) | 0.55 [0.36–0.84] | |
Gender | 0.7034 | ||
Male | 90 (23.25) | 1 | |
Female | 24 (21.05) | 0.88 [0.53–1.46] | |
Age | 0.0148 * | ||
18–24 | 27 (15.88) | 1 | |
25–34 | 45 (22.84) | 1.57 [0.93–2.66] | |
35–44 | 31 (32.63) | 2.57 [1.42–4.66] | |
45–59 | 11 (28.20) | 2.08 [0.93–4.67] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinto, B.; Kaboré, D.P.A.; Kania, D.; Kagoné, T.S.; Kiba-Koumaré, A.; Pinceloup, L.; Thaurignac, G.; Perre, P.V.d.; Dabire, R.K.; Baldet, T.; et al. Serological Evidence of Zika Virus Circulation in Burkina Faso. Pathogens 2022, 11, 741. https://doi.org/10.3390/pathogens11070741
Tinto B, Kaboré DPA, Kania D, Kagoné TS, Kiba-Koumaré A, Pinceloup L, Thaurignac G, Perre PVd, Dabire RK, Baldet T, et al. Serological Evidence of Zika Virus Circulation in Burkina Faso. Pathogens. 2022; 11(7):741. https://doi.org/10.3390/pathogens11070741
Chicago/Turabian StyleTinto, Bachirou, Didier Patindé Alexandre Kaboré, Dramane Kania, Thérèse Samdapawindé Kagoné, Alice Kiba-Koumaré, Laura Pinceloup, Guillaume Thaurignac, Philippe Van de Perre, Roch Kounbobr Dabire, Thierry Baldet, and et al. 2022. "Serological Evidence of Zika Virus Circulation in Burkina Faso" Pathogens 11, no. 7: 741. https://doi.org/10.3390/pathogens11070741
APA StyleTinto, B., Kaboré, D. P. A., Kania, D., Kagoné, T. S., Kiba-Koumaré, A., Pinceloup, L., Thaurignac, G., Perre, P. V. d., Dabire, R. K., Baldet, T., Guitierrez, S., Gil, P., Ayouba, A., Salinas, S., & Simonin, Y. (2022). Serological Evidence of Zika Virus Circulation in Burkina Faso. Pathogens, 11(7), 741. https://doi.org/10.3390/pathogens11070741