The Tapeworm Hymenolepis diminuta as an Important Model Organism in the Experimental Parasitology of the 21st Century
Abstract
1. Introduction
2. Molecular Biology
3. Biochemistry
4. The Host–Parasite Immunology
5. H. diminuta as a Therapeutic Agent
6. The Host–Parasite Relationship
7. Treatments
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hunter, P. The paradox of model organisms. The use of model organisms in research will continue despite their shortcomings. EMBO Rep. 2008, 9, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Vuitton, D.A.; Gottstein, B. Echinococcus multilocularis and its intermediate host: A model of parasite-host interplay. J. Biomed. Biotechnol. 2010, 2010, 923193. [Google Scholar] [CrossRef] [PubMed]
- Tsai, I.J.; Zarowiecki, M.; Holroyd, N.; Garciarrubio, A.; Sanchez-Flores, A.; Brooks, K.L.; Tracey, A.; Bobes, R.J.; Fragoso, G.; Sciutto, E.; et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature 2013, 496, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Olson, P. Hox genes and the parasitic flatworms: New opportunities, challenges and lessons from the free-living. Parasitol. Int. 2008, 57, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Markoski, M.M.; Bizarro, C.; Farias, S.; Espinoza, I.; Galanti, N.; Zaha, A.; Ferreira, H. In Vitro Segmentation Induction of Mesocestoides Corti (Cestoda) Tetrathyridia. J. Parasitol. 2003, 89, 27–34. [Google Scholar] [CrossRef] [PubMed]
- de Lima, J.C.; Monteiro, K.M.; Cabrera, T.N.B.; Paludo, G.P.; Moura, H.; Barr, J.R.; Zaha, A.; Ferreira, H.B. Comparative proteomics of the larval and adult stages of the model cestode parasite Mesocestoides corti. J. Proteom. 2018, 175, 127–135. [Google Scholar] [CrossRef]
- McKAY, D.M. The immune response to and immunomodulation by Hymenolepis diminuta. Parasitology 2009, 137, 385–394. [Google Scholar] [CrossRef]
- Rozario, T.; Newmark, P.A. A confocal microscopy-based atlas of tissue architecture in the tapeworm Hymenolepis diminuta. Exp. Parasitol. 2015, 158, 31–41. [Google Scholar] [CrossRef]
- Woolsey, I.D.; Fredensborg, B.L.; Jensen, P.M.; Kapel, C.M.O.; Meyling, N.V. An insect–tapeworm model as a proxy for anthelminthic effects in the mammalian host. Parasitol. Res. 2015, 114, 2777–2780. [Google Scholar] [CrossRef][Green Version]
- Mansur, F.; Luoga, W.; Buttle, D.; Duce, I.; Lowe, A.; Behnke, J. The anthelmintic efficacy of natural plant cysteine proteinases against two rodent cestodes Hymenolepis diminuta and Hymenolepis microstoma in vitro. Vet. Parasitol. 2014, 201, 48–58. [Google Scholar] [CrossRef]
- Saghir, N.; Conde, P.J.; Brophy, P.M.; Barrett, J. A new diagnostic tool for neurocysticercosis is a member of a cestode specific hydrophobic ligand binding protein family. FEBS Lett. 2000, 487, 181–184. [Google Scholar] [CrossRef] [PubMed]
- von Nickisch-Rosenegk, M.; Brown, W.M.; Boore, J.L. Complete Sequence of the Mitochondrial Genome of the Tapeworm Hymenolepis diminuta: Gene Arrangements Indicate that Platyhelminths Are Eutrochozoans. Mol. Biol. Evol. 2001, 18, 721–730. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.M.; Jastrzębski, J.P.; Kuśmirek, W.; Sałamatin, R.; Rydzanicz, M.; Sobczyk-Kopcioł, A.; Sulima-Celińska, A.; Paukszto, Ł.; Makowczenko, K.G.; Płoski, R.; et al. Hybrid de novo whole-genome assembly and annotation of the model tapeworm Hymenolepis diminuta. Sci. Data 2020, 6, 302. [Google Scholar] [CrossRef] [PubMed]
- Mohajer-Maghari, B.; Amini-Bavil-Olyaee, S.; Webb, R.A.; Coe, I.R. Molecular cloning and characterization of Hymenolepis diminuta alpha-tubulin gene. DNA Seq. 2007, 18, 80–83. [Google Scholar] [CrossRef]
- Řežábková, L.; Brabec, J.; Jirků, M.; Dellerba, M.; Kuchta, R.; Modrý, D.; Parker, W.; Pomajbíková, K.J. Genetic diversity of the potentially therapeutic tapeworm Hymenolepis diminuta (Cestoda: Cyclophyllidea). Parasitol. Int. 2019, 71, 121–125. [Google Scholar] [CrossRef]
- Sharma, S.; Lyngdoh, D.; Roy, B.; Tandon, V. Differential diagnosis and molecular characterization of Hymenolepis nana and Hymenolepis diminuta (Cestoda: Cyclophyllidea: Hymenolepididae) based on nuclear rDNA ITS2 gene marker. Parasitol. Res. 2016, 115, 4293–4298. [Google Scholar] [CrossRef]
- Hoque, T.; Boghal, M.; Webb, R.A. Validation of internal controls for gene expression analysis in the intestine of rats infected with Hymenolepis diminuta. Parasitol. Int. 2007, 56, 325–329. [Google Scholar] [CrossRef]
- Kosik-Bogacka, D.I.; Wojtkowiak-Giera, A.; Kolasa, A.; Baranowska-Bosiacka, I.; Lanocha, N.; Wandurska-Nowak, E.; Izabela, G.; Salamatin, R.; Jagodzinski, P.P. Hymenolepis diminuta: Analysis of the expression of Toll-like receptor genes and protein (TLR3 and TLR9) in the small and large intestines of rats. Exp. Parasitol. 2014, 145, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Kosik-Bogacka, D.; Wojtkowiak-Giera, A.; Kolasa, A.; Salamatin, R.; Jagodzinski, P.; Wandurska-Nowak, E. Hymenolepis diminuta: Analysis of the expression of Toll-like receptor genes (TLR2 and TLR4) in the small and large intestines of rats. Exp. Parasitol. 2012, 130, 261–266. [Google Scholar] [CrossRef]
- Kosik-Bogacka, D.; Wojtkowiak-Giera, A.; Kolasa, A.; Czernomysy-Furowicz, D.; Lanocha-Arendarczyk, N.; Wandurska-Nowak, E.; Salamatin, R.; Jagodzinski, P. Hymenolepis diminuta: Analysis of the expression of Toll-like receptor genes (TLR2 and TLR4) in the small and large intestines of rats. Part II. Exp. Parasitol. 2013, 135, 437–445. [Google Scholar] [CrossRef]
- Kosik-Bogacka, D.I.; Baranowska-Bosiacka, I.; Kolasa-Wołosiuk, A.; Lanocha-Arendarczyk, N.; Gutowska, I.; Korbecki, J.; Namięta, H.; Rotter, I. The inflammatory effect of infection with Hymenolepis diminuta via the increased expression and activity of COX-1 and COX-2 in the rat jejunum and colon. Exp. Parasitol. 2016, 169, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.; Wang, M.-H.; Pai, A.; Yan, G. Transcription profiling of immune genes during parasite infection in susceptible and resistant strains of the flour beetles (Tribolium castaneum). Exp. Parasitol. 2013, 134, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Warr, E.; Meredith, J.M.; Nimmo, D.D.; Basu, S.; Hurd, H.; Eggleston, P. A tapeworm molecule manipulates vitellogenin expression in the beetle Tenebrio molitor. Insect Mol. Biol. 2006, 15, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Bikopoulos, G.J.; Hoque, T.; Webb, R.A. Infection with the cestode Hymenolepis diminuta induces changes in acetylcholine metabolism and muscarinic receptor mRNA expression in the rat jejunum. Parasitol. Res. 2006, 99, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.; Pai, A.; Yan, G. Quantitative Trait Loci for Susceptibility to Tapeworm Infection in the Red Flour Beetle. Genetics 2003, 165, 1307–1315. [Google Scholar] [CrossRef]
- Zhong, D.; Pai, A.; Yan, G. Costly resistance to parasitism: Evidence from simultaneous quantitative trait loci mapping for resistance and fitness in Tribolium castaneum. Genetics 2005, 169, 2127–2135. [Google Scholar] [CrossRef][Green Version]
- Warr, E.; Eggleston, P.; Hurd, H. Apoptosis in the fat body tissue of the beetle Tenebrio molitor parasitised by Hymenolepis diminuta. J. Insect Physiol. 2004, 50, 1037–1043. [Google Scholar] [CrossRef]
- Saghir, N.; Conde, P.J.; Brophy, P.M.; Barrett, J. Biochemical characterisation of a hydrophobic ligand binding protein from the tapeworm Hymenolepis diminuta. Int. J. Parasitol. 2001, 31, 653–660. [Google Scholar] [CrossRef]
- Onufriev, M.V.; Gulyaeva, N.V.; Terenina, N.B.; Tolstenkov, O.O.; Gustafsson, M.K.S. The effect of a nitric oxide donor on the synthesis of cGMP in Hymenolepis diminuta: A radiometric study. Parasitol. Res. 2004, 95, 22–24. [Google Scholar] [CrossRef]
- Park, J.P.; Fioravanti, C.F. Catalysis of NADH→NADP+ transhydrogenation by adult Hymenolepis diminuta mitochondria. Parasitol. Res. 2005, 98, 200–206. [Google Scholar] [CrossRef]
- Mercer-Haines, N.; Fioravanti, C.F. Hymenolepis diminuta: Mitochondrial transhydrogenase as an additional site for anaerobic phosphorylation. Exp. Parasitol. 2008, 119, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.-C.; Lai, S.-C. Induction of cysteine proteinase in the encapsulation of Hymenolepis diminuta eggs in the American cockroach, Periplaneta americana. J. Invertebr. Pathol. 2006, 92, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Skrzycki, M.; Majewska, M.; Podsiad, M.; Czeczot, H.; Salamatin, R.; Twarowska, J.; Grytner-Zięcina, B. Hymenolepis diminuta: Experimental studies on the antioxidant system with short and long term infection periods in the rats. Exp. Parasitol. 2011, 129, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Czeczot, H.; Skrzycki, M.; Majewska-Wierzbicka, M.; Podsiad, M.; Salamatin, R.; Grytner-Zięcina, B. The antioxidant defence mechanisms of parasite and host after chronic Hymenolepis diminuta infestation of the rat. Pol. J. Vet. Sci. 2013, 16, 121–123. [Google Scholar] [CrossRef][Green Version]
- Kosik-Bogacka, D.I.; Baranowska-Bosiacka, I.; Noceń, I.; Jakubowska, K.; Chlubek, D. Hymenolepis diminuta: Activity of anti-oxidant enzymes in different parts of rat gastrointestinal tract. Exp. Parasitol. 2011, 128, 265–271. [Google Scholar] [CrossRef]
- Vokřál, I.; Jirásko, R.; Jedličková, V.; Bártíková, H.; Skálová, L.; Lamka, J.; Holčapek, M.; Szotáková, B. The inability of tapeworm Hymenolepis diminuta and fluke Dicrocoelium dendriticum to metabolize praziquantel. Vet. Parasitol. 2012, 185, 168–174. [Google Scholar] [CrossRef]
- Bártíková, H.; Vokřál, I.; Skálová, L.; Kubíček, V.; Firbasová, J.; Briestenský, D.; Lamka, J.; Szotáková, B. The activity of drug-metabolizing enzymes and the biotransformation of selected anthelmintics in the model tapeworm Hymenolepis diminuta. Parasitology 2012, 139, 809–818. [Google Scholar] [CrossRef]
- Kreshchenko, N.; Terenina, N.; Ermakov, A. Serotonin Signalling in Flatworms: An Immunocytochemical Localisation of 5-HT7 Type of Serotonin Receptors in Opisthorchis felineus and Hymenolepis diminuta. Biomolecules 2021, 11, 1212. [Google Scholar] [CrossRef]
- Wegener Parfrey, L.; Jirků, M.; Šíma, R.; Jalovecká, M.; Sak, B.; Grigore, K.; Jirků Pomajbíková, K. A benign helminth alters the host immune system and the gut microbiota in a rat model system. PLoS ONE 2017, 12, e0182205. [Google Scholar] [CrossRef]
- Allen, J.; Maizels, R.M. Diversity and dialogue in immunity to helminths. Nat. Rev. Immunol. 2011, 11, 375–388. [Google Scholar] [CrossRef]
- Webb, R.A.; Hoque, T.; Dimas, S. Expulsion of the gastrointestinal cestode, Hymenolepis diminuta by tolerant rats: Evidence for mediation by a Th2 type immune enhanced goblet cell hyperplasia, increased mucin production and secretion. Parasite Immunol. 2007, 29, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; McKAY, D.M. Immune modulation by a high molecular weight fraction from the rat tapeworm Hymenolepis diminuta. Parasitology 1999, 130, 575–585. [Google Scholar] [CrossRef] [PubMed]
- McKay, D.M.; Khan, W.I. STAT-6 Is an Absolute Requirement for Murine Rejection of Hymenolepis diminuta. J. Parasitol. 2003, 89, 188–189. [Google Scholar] [CrossRef] [PubMed]
- Ishih, A.; Uchikawa, R. Immunoglobulin E and mast cell responses are related to worm biomass but not expulsion of Hymenolepis diminuta during low dose infection in rats. Parasite Immunol. 2000, 22, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Ohno, T.; Kai, T.; Miyasaka, Y.; Maruyama, H.; Ishih, A.; Kino, H. Intestinal immunity suppresses carrying capacity of rats for the model tapeworm, Hymenolepis diminuta. Parasitol. Int. 2018, 67, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.-L.R.; Leung, G.; McKay, D.M. Cestode regulation of inflammation and inflammatory diseases. Int. J. Parasitol. 2013, 43, 233–243. [Google Scholar] [CrossRef]
- Lopes, F.; Reyes, J.L.; Wang, A.; Leung, G.; McKay, D.M. Enteric epithelial cells support growth of Hymenolepis diminuta in vitro and trigger TH2-promoting events in a species-specific manner. Int. J. Parasitol. 2015, 45, 691–696. [Google Scholar] [CrossRef]
- Starke-Buzetti, W.A.; Oaks, J.A. Increased glial-derived neurotrophic factor in the small intestine of rats infected with the tapeworm, Hymenolepis diminuta. Int. J. Exp. Pathol. 2008, 89, 458–465. [Google Scholar] [CrossRef]
- Bień, J.; Sałamatin, R.; Sulima, A.; Savijoki, K.; Bruce Conn, D.; Näreaho, A.; Młocicki, D. Mass spectrometry analysis of the excretory-secretory (E-S) products of the model cestode Hymenolepis diminuta reveals their immunogenic properties and the presence of new E-S proteins in cestodes. Acta Parasitol. 2016, 61, 429–442. [Google Scholar] [CrossRef]
- Zawistowska-Deniziak, A.; Basałaj, K.; Strojny, B.; Młocicki, D. New Data on Human Macrophages Polarization by Hymenolepis diminuta Tapeworm—An In Vitro Study. Front. Immunol. 2017, 8, 148. [Google Scholar] [CrossRef]
- Johnston, M.J.; Wang, A.; Catarino, M.E.; Ball, L.; Phan, V.C.; MacDonald, J.A.; McKay, D.M. Extracts of the rat tapeworm, Hymenolepis diminuta, suppress macrophage activation in vitro and alleviate chemically induced colitis in mice. Infect. Immun. 2010, 78, 1364–1375. [Google Scholar] [CrossRef] [PubMed]
- Aira, N.; Andersson, A.-M.; Singh, S.K.; McKay, D.M.; Blomgran, R. Species dependent impact of helminth-derived antigens on human macrophages infected with Mycobacterium tuberculosis: Direct effect on the innate anti-mycobacterial response. PLoS Negl. Trop. Dis. 2017, 11, e0005390. [Google Scholar] [CrossRef] [PubMed]
- Graves, N.; Venu, V.K.P.; Yipp, B.; Petri, B.; Hirota, S.; Gilleard, J.; McKay, D.M.; Lopes, F. A Trypsin-Sensitive Proteoglycan from the Tapeworm Hymenolepis diminuta Inhibits Murine Neutrophil Chemotaxis in vitro by Suppressing p38 MAP Kinase Activation. J. Innate Immun. 2018, 11, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.M.; Wang, A.; Hirota, C.L.; McKay, D.M. Neutralizing Anti-IL-10 Antibody Blocks the Protective Effect of Tapeworm Infection in a Murine Model of Chemically Induced Colitis. J. Immunol. 2005, 174, 7368–7375. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.M.; Wang, A.; Parhar, K.K.S.; Johnston, M.J.; Van Rooijen, N.; Beck, P.L.; McKay, D.M. In Vitro-Derived Alternatively Activated Macrophages Reduce Colonic Inflammation in Mice. Gastroenterology 2010, 138, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Melon, A.; Wang, A.; Phan, V.; McKay, D.M. Infection with Hymenolepis diminuta Is More Effective than Daily Corticosteroids in Blocking Chemically Induced Colitis in Mice. J. Biomed. Biotechnol. 2009, 2010, 384523. [Google Scholar] [CrossRef]
- Persaud, R.; Wang, A.; Reardon, C.; McKay, D.M. Characterization of the immuno-regulatory response to the tapeworm Hymenolepis diminuta in the non-permissive mouse host. Int. J. Parasitol. 2007, 37, 393–403. [Google Scholar] [CrossRef]
- Matisz, C.E.; Leung, G.; Reyes, J.L.; Wang, A.; Sharkey, K.A.; McKay, D.M. Adoptive transfer of helminth antigen-pulsed dendritic cells protects against the development of experimental colitis in mice. Eur. J. Immunol. 2015, 45, 3126–3139. [Google Scholar] [CrossRef]
- Matisz, C.E.; Faz-López, B.; Thomson, E.; Al Rajabi, A.; Lopes, F.; Terrazas, L.I.; Wang, A.; Sharkey, K.A.; McKay, D.M. Suppression of colitis by adoptive transfer of helminth antigen-treated dendritic cells requires interleukin-4 receptor-α signaling. Sci. Rep. 2017, 7, 40631. [Google Scholar] [CrossRef]
- Matisz, C.E.; Geuking, M.B.; Lopes, F.; Petri, B.; Wang, A.; Sharkey, K.A.; McKay, D.M. Helminth Antigen-Conditioned Dendritic Cells Generate Anti-Inflammatory CD4 T Cells Independent of Antigen Presentation via MHC II. Am. J. Pathol. 2018, 188, 2589–2604. [Google Scholar] [CrossRef]
- Reyes, J.L.; Fernando, M.R.; Lopes, F.; Leung, G.; Mancini, N.L.; Matisz, C.E.; Wang, A.; McKay, D.M. IL-22 Restrains Tapeworm-Mediated Protection against Experimental Colitis via Regulation of IL-25 Expression. PLoS Pathog. 2016, 12, e1005481. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Rajeev, S.; Wang, A.; McKay, D.M. Infection with Hymenolepis diminuta Blocks Colitis and Hastens Recovery While Colitis Has Minimal Impact on Expulsion of the Cestode from the Mouse Host. Pathogens 2021, 10, 994. [Google Scholar] [CrossRef] [PubMed]
- Pomajbíková, K.J.; Jirků, M.; Levá, J.; Sobotková, K.; Morien, E.; Parfrey, L.W. The benign helminth Hymenolepis diminuta ameliorates chemically induced colitis in a rat model system. Parasitology 2018, 145, 1324–1335. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Arai, T.; Campbell, A.; Reyes, J.L.; Lopes, F.; McKay, D.M. Triggering immunological memory against the tapeworm Hymenolepis diminuta to protect against colitis. Parasite Immunol. 2017, 39, e12490. [Google Scholar] [CrossRef]
- Reyes, J.L.; Wang, A.; Fernando, M.R.; Graepel, R.; Leung, G.; van Rooijen, N.; Sigvardsson, M.; McKay, D.M. Splenic B Cells from Hymenolepis diminuta—Infected Mice Ameliorate Colitis Independent of T Cells and via Cooperation with Macrophages. J. Immunol. 2014, 194, 364–378. [Google Scholar] [CrossRef]
- Reardon, C.; Sanchez, A.; Hogaboam, C.M.; McKay, D.M. Tapeworm Infection Reduces Epithelial Ion Transport Abnormalities in Murine Dextran Sulfate Sodium-Induced Colitis. Infect. Immun. 2001, 69, 4417–4423. [Google Scholar] [CrossRef]
- Reyes, J.L.; Lopes, F.; Leung, G.; Mancini, N.L.; Matisz, C.E.; Wang, A.; Thomson, E.A.; Graves, N.; Gilleard, J.; McKay, D.M. Treatment with Cestode Parasite Antigens Results in Recruitment of CCR2+ Myeloid Cells, the Adoptive Transfer of Which Ameliorates Colitis. Infect. Immun. 2016, 84, 3471–3483. [Google Scholar] [CrossRef]
- Shi, M.; Wang, A.; Prescott, D.; Waterhouse, C.C.; Zhang, S.; McDougall, J.J.; Sharkey, K.A.; McKay, D.M. Infection with an intestinal helminth parasite reduces Freund’s complete adjuvant-induced monoarthritis in mice. Arthritis Rheum. 2011, 63, 434–444. [Google Scholar] [CrossRef]
- Graepel, R.; Leung, G.; Wang, A.; Villemaire, M.; Jirik, F.R.; Sharkey, K.A.; McDougall, J.J.; McKay, D.M. Murine autoimmune arthritis is exaggerated by infection with the rat tapeworm, Hymenolepis diminuta. Int. J. Parasitol. 2013, 43, 593–601. [Google Scholar] [CrossRef]
- McKay, D.M.; Wallace, J.L. Acetic Acid Induced Ulceration in Rats Is Not Affected by Infection with Hymenolepis diminuta. J. Parasitol. 2009, 95, 481–482. [Google Scholar] [CrossRef]
- Fan, P.-C.; Chung, W.-C.; Ito, A. Immunization of Rodents Against Hymenolepis Infections using Non-Viable Homologous Oncospheres. Kaohsiung J. Med. Sci. 2004, 20, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Lopes, F.; Shute, A.; Wang, A.; McKay, D.M. Young mice expel the tapeworm Hymenolepis diminuta and are protected from colitis by triggering a memory response with worm antigen. Am. J. Physiol. Liver Physiol. 2018, 314, G461–G470. [Google Scholar] [CrossRef] [PubMed]
- Smyth, K.; Morton, C.; Mathew, A.; Karuturi, S.; Haley, C.; Zhang, M.; Holzknecht, Z.E.; Swanson, C.; Lin, S.S.; Parker, W. Production and Use of Hymenolepis diminuta Cysticercoids as Anti-Inflammatory Therapeutics. J. Clin. Med. 2017, 6, 98. [Google Scholar] [CrossRef]
- Hunter, M.M.; Wang, A.; Mckay, D.M. Helminth Infection Enhances Disease in a Murine TH2 Model of Colitis. Gastroenterology 2007, 132, 1320–1330. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Fernando, M.; Leung, G.; Phan, V.; Smyth, D.; McKay, D.M. Exacerbation of Oxazolone Colitis by Infection with the Helminth Hymenolepis diminuta: Involvement of IL-5 and Eosinophils. Am. J. Pathol. 2010, 177, 2850–2859. [Google Scholar] [CrossRef]
- Sauer, S.; Beinart, D.; Finn, S.M.B.; Kumar, S.L.; Cheng, Q.; Hwang, S.E.; Parker, W.; Devi, G.R. Hymenolepis diminuta-based helminth therapy in C3(1)-TAg mice does not alter breast tumor onset or progression. Evol. Med. Public Health 2021, 9, 131–138. [Google Scholar] [CrossRef]
- Sloup, V.; Jankovská, I.; Štolcová, M.; Magdálek, J.; Karešová, V.; Lanková, S.; Langrová, I. Effects of excessive dietary zinc or zinc/cadmium and tapeworm infection on the biochemical parameters in rats. J. Anim. Physiol. Anim. Nutr. 2021, 105, 989–995. [Google Scholar] [CrossRef]
- Colinet, H.; Salin, C.; Boivin, G.; Hance, T. Host age and fitness-related traits in a koinobiont aphid parasitoid. Ecol. Èntomol. 2005, 30, 473–479. [Google Scholar] [CrossRef]
- Blaser, M.; Schmid-Hempel, P. Determinants of virulence for the parasite Nosema whitei in its host Tribolium castaneum. J. Invertebr. Pathol. 2005, 89, 251–257. [Google Scholar] [CrossRef]
- Shostak, A.W. Effect of Age of the Intermediate Host Tribolium confusum (Coleoptera) on Infection by Hymenolepis diminuta (Cestoda). J. Parasitol. 2008, 94, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, S.; Buss, S.M.; Cassidy, E.J.; Meyling, N.V.; Fredensborg, B.L. Establishment Success of the Beetle Tapeworm Hymenolepis diminuta Depends on Dose and Host Body Condition. Insects 2018, 9, 14. [Google Scholar] [CrossRef] [PubMed]
- Hitchen, S.J.; Shostak, A.W.; Belosevic, M. Hymenolepis diminuta (Cestoda) induces changes in expression of select genes of Tribolium confusum (Coleoptera). Parasitol. Res. 2009, 105, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Shea, J.F. The effect of Hymenolepis diminuta (Cestoda) cysticercoids on the weight change, frass production, and food intake of the intermediate host, Tenebrio molitor (Coleoptera). Parasitol. Res. 2005, 98, 1. [Google Scholar] [CrossRef] [PubMed]
- Shea, J.F. Sex differences in frass production and weight change in Tenebrio molitor (Coleoptera) infected with cysticercoids of the tapeworm Hymenolepis diminuta (Cestoda). J. Insect Sci. 2005, 5, 31. [Google Scholar] [CrossRef]
- Shea, J.F. Lack of preference for infective faeces in Hymenolepis diminuta-infected beetles (Tenebrio molitor). J. Helminthol. 2007, 81, 293–299. [Google Scholar] [CrossRef]
- Ponton, F.; Lalubin, F.; Fromont, C.; Wilson, K.; Behm, C.; Simpson, S.J. Hosts use altered macronutrient intake to circumvent parasite-induced reduction in fecundity. Int. J. Parasitol. 2011, 41, 43–50. [Google Scholar] [CrossRef]
- DeMuth, J.P.; Naidu, A.; Mydlarz, L.D. Sex, War, and Disease: The Role of Parasite Infection on Weapon Development and Mating Success in a Horned Beetle (Gnatocerus cornutus). PLoS ONE 2012, 7, e28690. [Google Scholar] [CrossRef]
- Hurd, H.; Warr, E.; Polwart, A. A parasite that increases host lifespan. Proc. R. Soc. B Boil. Sci. 2001, 268, 1749–1753. [Google Scholar] [CrossRef]
- Hurd, H.; Arme, C. Hymenolepis diminuta: Effect of metacestodes on production and viability of eggs in the intermediate host, Tenebrio molitor. J. Invertebr. Pathol. 1986, 47, 225–230. [Google Scholar] [CrossRef]
- Shostak, A.W. Tapeworm (Hymenolepis diminuta) infection in flour beetles (Tribolium confusum): Does it cause a trade-off between host fecundity and egg size? Can. J. Zool. 2009, 87, 1087–1095. [Google Scholar] [CrossRef]
- Pai, A.; Yan, G. Effects of Tapeworm Infection on Male Reproductive Success and Mating Vigor in The Red Flour Beetle, Tribolium Castaneum. J. Parasitol. 2003, 89, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Hurd, H.; Ardin, R. Infection increases the value of nuptial gifts, and hence male reproductive success, in the Hymenolepis diminuta-Tenebrio molitor association. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270 (Suppl. 2), S172–S174. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.; Eggleston, P.; Hurd, H. Juvenile hormone titre and egg production in Tenebrio molitor infected by Hymenolepis diminuta: Effect of male and/or female infection, male age and mating. J. Insect Physiol. 2003, 49, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Worden, B.D.; Parker, P.G.; Pappas, P.W. Parasites reduce attractiveness and reproductive success in male grain beetles. Anim. Behav. 2000, 59, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Willis, C.; Poulin, R. Preference of female rats for the odours of non-parasitised males: The smell of good genes? Folia Parasitol. 2000, 47, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Worden, B.D.; Parker, P.G. Females prefer noninfected males as mates in the grain beetle Tenebrio molitor: Evidence in pre- and postcopulatory behaviours. Anim. Behav. 2005, 70, 1047–1053. [Google Scholar] [CrossRef]
- Sheiman, I.M.; Shkutin, M.F.; Terenina, N.B.; Gustafsson, M.K.S. A behavioral study of the beetle Tenebrio molitor infected with cysticercoids of the rat tapeworm Hymenolepis diminuta. Naturwissenschaften 2006, 93, 305–308. [Google Scholar] [CrossRef]
- Webster, J.P.; Gowtage-Sequeira, S.; Berdoy, M.; Hurd, H. Predation of beetles (Tenebrio molitor) infected with tapeworms (Hymenolepis diminuta): A note of caution for the Manipulation Hypothesis. Parasitology 2000, 120, 313–318. [Google Scholar] [CrossRef]
- Blecharz-Klin, K.; Świerczyńska, M.; Piechal, A.; Wawer, A.; Joniec-Maciejak, I.; Pyrzanowska, J.; Wojnar, E.; Zawistowska-Deniziak, A.; Sulima-Celińska, A.; Młocicki, D.; et al. Infection with intestinal helminth (Hymenolepis diminuta) impacts exploratory behavior and cognitive processes in rats by changing the central level of neurotransmitters. PLoS Pathog. 2022, 18, e1010330. [Google Scholar] [CrossRef]
- Goswami, R.; Singh, S.M.; Kataria, M.; Somvanshi, R. Clinicopathological studies on spontaneous Hymenolepis diminuta infection in wild and laboratory rats. Braz. J. Vet. Pathol. 2011, 4, 103–111. [Google Scholar]
- Kosik-Bogacka, D.I.; Kolasa, A. Histopathological changes in small and large intestines during hymenolepidosis in rats. Folia Biol. 2012, 60, 195–198. [Google Scholar] [CrossRef]
- Ahmad, A.K.; Abdel-Hafeez, E.H.; Kamal, A.M. Some studies on spontaneous Hymenolepis diminuta infection in laboratory rats. J. Egypt. Soc. Parasitol. 2015, 45, 115–124. [Google Scholar] [PubMed]
- Kosik-Bogacka, D.I.; Baranowska-Bosiacka, I.; Salamatin, R. Hymenolepis diminuta: Effect of infection on ion transport in colon and blood picture of rats. Exp. Parasitol. 2010, 124, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Kosik-Bogacka, D.I.; Kolasa, A.; Baranowska-Bosiacka, I.; Marchlewicz, M. Hymenolepis diminuta: The effects of infection on transepithelial ion transport and tight junctions in rat intestines. Exp. Parasitol. 2011, 127, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, N.P.; Brownfield, M.S.; Devente, J.; Bass, P.; Oaks, J.A. cGMP Secreted From the Tapeworm Hymenolepis diminuta Is a Signal Molecule to the Host Intestine. J. Parasitol. 2008, 94, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Kapczuk, P.; Kosik-Bogacka, D.; Kupnicka, P.; Kopytko, P.; Tarnowski, M.; Kolasa, A.; Chlubek, D.; Baranowska-Bosiacka, I. Hymenolepis diminuta Infection Affects Apoptosis in the Small and Large Intestine. Int. J. Environ. Res. Public Health 2022, 19, 9753. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.P.; Rathnayaka, Y.; Perera, P.K.; Peachey, L.E.; Nolan, M.J.; Krause, L.; Rajakaruna, R.S.; Cantacessi, C. Infections by human gastrointestinal helminths are associated with changes in faecal microbiota diversity and composition. PLoS ONE 2017, 12, e0184719. [Google Scholar] [CrossRef]
- Zaiss, M.M.; Harris, N.L. Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol. 2015, 38, 5–11. [Google Scholar] [CrossRef]
- McKenney, E.A.; Williamson, L.; Yoder, A.D.; Rawls, J.F.; Bilbo, S.D.; Parker, W. Alteration of the rat cecal microbiome during colonization with the helminth Hymenolepis diminuta. Gut Microbes 2015, 6, 182–193. [Google Scholar] [CrossRef]
- Shute, A.; Wang, A.; Jayme, T.S.; Strous, M.; McCoy, K.D.; Buret, A.G.; McKay, D.M. Worm expulsion is independent of alterations in composition of the colonic bacteria that occur during experimental Hymenolepis diminuta-infection in mice. Gut Microbes 2020, 11, 497–510. [Google Scholar] [CrossRef]
- Shute, A.; Callejas, B.E.; Li, S.; Wang, A.; Jayme, T.S.; Ohland, C.; Lewis, I.A.; Layden, B.T.; Buret, A.G.; McKay, D.M. Cooperation between host immunity and the gut bacteria is essential for helminth-evoked suppression of colitis. Microbiome 2021, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Fredensborg, B.L.; Fossdal, Í.; Kálvalíð, I.; Johannesen, T.B.; Stensvold, C.R.; Nielsen, H.V.; Kapel, C.M.O. Parasites modulate the gut-microbiome in insects: A proof-of-concept study. PLoS ONE 2020, 15, e0227561. [Google Scholar] [CrossRef] [PubMed]
- Sulima, A.; Bień, J.; Savijoki, K.; Näreaho, A.; Sałamatin, R.; Conn, D.B.; Młocicki, D. Identification of immunogenic proteins of the cysticercoid of Hymenolepis diminuta. Parasites Vectors 2017, 10, 577. [Google Scholar] [CrossRef] [PubMed]
- Sulima, A.; Savijoki, K.; Bień-Kalinowska, J.; Näreaho, A.; Sałamatin, R.; Conn, D.B.; Młocicki, D. Comparative Proteomic Analysis of Hymenolepis diminuta Cysticercoid and Adult Stages. Front. Microbiol. 2018, 8, 2672. [Google Scholar] [CrossRef]
- Młocicki, D.; Sulima, A.; Bień, J.; Näreaho, A.; Zawistowska-Deniziak, A.; Basałaj, K.; Sałamatin, R.; Conn, D.B.; Savijoki, K. Immunoproteomics and Surfaceomics of the Adult Tapeworm Hymenolepis diminuta. Front. Immunol. 2018, 9, 2487. [Google Scholar] [CrossRef]
- Mazanec, H.; Koník, P.; Gardian, Z.; Kuchta, R. Extracellular vesicles secreted by model tapeworm Hymenolepis diminuta: Biogenesis, ultrastructure and protein composition. Int. J. Parasitol. 2020, 51, 327–332. [Google Scholar] [CrossRef]
- Burt, M.D.B. Aspects of the Life History and Systematics of Hymenolepis Diminuta. In Biology of the Tapeworm Hymenolepis Diminuta; Arai, P.H., Ed.; Academic Press: New York, NY, USA, 1980; pp. 1–57. [Google Scholar]
- Álvarez-Fernández, B.E.; Rodrfguez-Bataz, E.; Dfaz-Chiguer, D.L.; Márquez-Navarro, A.; Sánchez-Manzano, R.M.; Nogueda-Torres, B. Mixed Hymenolepis species infection in two family members: A case report from an urban area of Chilpancingo, Guerrero, México. Trop. Gastroenterol. 2012, 33, 83–84. [Google Scholar] [CrossRef]
- Kołodziej, P.; Rzymowska, J.; Stępień-Rukasz, H.; Lorencowicz, R.; Lucińska, M.; Dzióbek, M. Analysis of a child infected with Hymenolepis diminuta in Poland. Ann. Agric. Environ. Med. 2014, 21, 510–511. [Google Scholar] [CrossRef]
- Sinhabahu, V.; Perera, T.; Samarasinghe, S. A case of Hymenolepis diminuta (rat tape worm) infestation in a child. Ceylon Med. J. 2014, 59, 70–71. [Google Scholar] [CrossRef]
- Panti-May, J.A.; Rodríguez-Vivas, R.I.; García-Prieto, L.; Servián, A.; Costa, F. Worldwide overview of human infections with Hymenolepis diminuta. Parasitol. Res. 2020, 119, 1997–2004. [Google Scholar] [CrossRef]
- Jones, W.E. Niclosamide as a Treatment for Hymenolepis diminuta and Dipylidium Caninum Infection in Man. Am. J. Trop. Med. Hyg. 1979, 28, 300–302. [Google Scholar] [CrossRef]
- Tangpu, V.; Temjenmongla; Yadav, A.K. Anticestodal property of Strobilanthes discolor: An experimental study in Hymenolepis diminuta—Rat model. J. Ethnopharmacol. 2006, 105, 459–463. [Google Scholar] [CrossRef]
- Yadav, A.K.; Tangpu, V. Anticestodal activity of Adhatoda vasica extract against Hymenolepis diminuta infections in rats. J. Ethnopharmacol. 2008, 119, 322–324. [Google Scholar] [CrossRef]
- Yadav, A.K.; Tangpu, V. Therapeutic efficacy of Zanthoxylum rhetsa DC extract against experimental Hymenolepis diminuta (Cestoda) infections in rats. J. Parasit. Dis. 2009, 33, 42–47. [Google Scholar] [CrossRef]
- Yadav, A.K. Temjenmongla Anticestodal activity of Houttuynia cordata leaf extract against Hymenolepis diminuta in experimentally infected rats. J. Parasit. Dis. 2011, 35, 190–194. [Google Scholar] [CrossRef]
- Yadav, A.K.; Tangpu, V. Anthelmintic activity of ripe fruit extract of Solanum myriacanthum Dunal (Solanaceae) against experimentally induced Hymenolepis diminuta (Cestoda) infections in rats. Parasitol. Res. 2011, 110, 1047–1053. [Google Scholar] [CrossRef][Green Version]
- Kundu, S.; Roy, S.; Lyndem, L.M. Cassia alata L: Potential role as anthelmintic agent against Hymenolepis diminuta. Parasitol. Res. 2012, 111, 1187–1192. [Google Scholar] [CrossRef]
- Giri, B.R.; Bharti, R.R.; Roy, B. In vivo anthelmintic activity of Carex baccans and its active principle resveratrol against Hymenolepis diminuta. Parasitol. Res. 2015, 114, 785–788. [Google Scholar] [CrossRef]
- Deori, K.; Yadav, A.K. Anthelmintic effects of Oroxylum indicum stem bark extract on juvenile and adult stages of Hymenolepis diminuta (Cestoda), an in vitro and in vivo study. Parasitol. Res. 2015, 115, 1275–1285. [Google Scholar] [CrossRef]
- Gogoi, S.; Yadav, A.K. In vitro and in vivo anthelmintic effects of Caesalpinia bonducella (L.) Roxb. leaf extract on Hymenolepis diminuta (Cestoda) and Syphacia obvelata (Nematoda). J. Intercult. Ethnopharmacol. 2016, 5, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Nath, P.; Yadav, A.K. Anthelmintic activity of a standardized extract from the rhizomes of Acorus calamus Linn. (Acoraceae) against experimentally induced cestodiasis in rats. J. Intercult. Ethnopharmacol. 2016, 5, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Roy, S.; Nandi, S.; Ukil, B.; Lyndem, L.M. In vitro anthelmintic effects of Senna occidentalis (L.) link (Leguminosae) on rat tapeworm Hymenolepis diminuta. Int. J. Pharm. Pharm. Sci. 2015, 7, 268–271. [Google Scholar]
- Kundu, S.; Roy, S.; Nandi, S.; Ukil, B.; Lyndem, L.M. Senna alexandrina Mill. induced ultrastructural changes in Hymenolepis diminuta. J. Parasit. Dis. 2017, 41, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Ukil, B.; Roy, S.; Nandi, S.; Lyndem, L.M. Senna Plant Induces Disruption on The Mitochondria of Hymenolepis Diminuta. Int. J. Pharm. Pharm. Sci. 2018, 10, 136–138. [Google Scholar] [CrossRef][Green Version]
- Ukil, B.; Joardar, N.; Babu, S.P.S.; Lyndem, L.M. Effect of Senna plant on the mitochondrial activity of Hymenolepis diminuta. J. Parasit. Dis. 2021, 46, 139–151. [Google Scholar] [CrossRef]
- Roy, S.; Joardar, N.; Babu, S.P.S.; Lyndem, L.M. Senna plant generates reactive oxygen species (ROS) and induces apoptosis in Hymenolepis diminuta. Mol. Biochem. Parasitol. 2020, 238, 111297. [Google Scholar] [CrossRef]
- Abdel-Ghaffar, F.; Semmler, M.; Al-Rasheid, K.A.S.; Strassen, B.; Fischer, K.; Aksu, G.; Klimpel, S.; Mehlhorn, H. The effects of different plant extracts on intestinal cestodes and on trematodes. Parasitol. Res. 2010, 108, 979–984. [Google Scholar] [CrossRef]
- Sapaat, A.; Satrija, F.; Mahsol, H.H.; Ahmad, A.H. Anthelmintic activity of papaya seeds on Hymenolepis diminuta infections in rats. Trop. Biomed. 2012, 29, 508–512. [Google Scholar]
- Stepek, G.; Buttle, D.J.; Duce, I.R.; Lowe, A.; Behnke, J.M. Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode, Heligmosomoides polygyrus, in vitro. Parasitology 2004, 130, 203–211. [Google Scholar] [CrossRef]
- Dhakal, S.; Meyling, N.V.; Williams, A.R.; Mueller-Harvey, I.; Fryganas, C.; Kapel, C.M.; Fredensborg, B.L. Efficacy of condensed tannins against larval Hymenolepis diminuta (Cestoda) in vitro and in the intermediate host Tenebrio molitor (Coleoptera) in vivo. Vet. Parasitol. 2015, 207, 49–55. [Google Scholar] [CrossRef]
- Merwad, A.; Mitchell, S.; Zajac, A.; Flick, G.; Lindsay, D. Effects of high pressure processing on hatching of eggs of the zoonotic rat tapeworm Hymenolepis diminuta. Vet. Parasitol. 2010, 176, 185–188. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulima-Celińska, A.; Kalinowska, A.; Młocicki, D. The Tapeworm Hymenolepis diminuta as an Important Model Organism in the Experimental Parasitology of the 21st Century. Pathogens 2022, 11, 1439. https://doi.org/10.3390/pathogens11121439
Sulima-Celińska A, Kalinowska A, Młocicki D. The Tapeworm Hymenolepis diminuta as an Important Model Organism in the Experimental Parasitology of the 21st Century. Pathogens. 2022; 11(12):1439. https://doi.org/10.3390/pathogens11121439
Chicago/Turabian StyleSulima-Celińska, Anna, Alicja Kalinowska, and Daniel Młocicki. 2022. "The Tapeworm Hymenolepis diminuta as an Important Model Organism in the Experimental Parasitology of the 21st Century" Pathogens 11, no. 12: 1439. https://doi.org/10.3390/pathogens11121439
APA StyleSulima-Celińska, A., Kalinowska, A., & Młocicki, D. (2022). The Tapeworm Hymenolepis diminuta as an Important Model Organism in the Experimental Parasitology of the 21st Century. Pathogens, 11(12), 1439. https://doi.org/10.3390/pathogens11121439