Performance Evaluation of Nested Polymerase Chain Reaction (Nested PCR), Light Microscopy, and Plasmodium falciparum Histidine-Rich Protein 2 Rapid Diagnostic Test (PfHRP2 RDT) in the Detection of Falciparum Malaria in a High-Transmission Setting in Southwestern Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Design, Study Population and Sample Size Determination
2.3. Collection of Blood Samples
2.4. Microscopy Examination
2.5. Parasite Density Estimation
2.6. Malaria Rapid Diagnostic Tests (RDTs)
2.7. DNA Extraction and Molecular Analysis
2.8. Statistical Analyses
2.9. Ethical Considerations
3. Results
3.1. Distribution of the Study Participants
3.2. Malaria Prevalence by Microscopy, pfhrp 2 RDT and Nested PCR
3.3. Diagnostic Performance of pfhrp 2 RDT and Microscopy Using Nested PCR as Reference Standard
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Microscopy for the Detection, Identification and Quantification of Malaria Parasites on Stained Thick and Thin Blood Films in Research Settings (Version 1.0): Procedure: Methods Manual; World Health Organization: Geneva, Switzerland, 2015; p. 32. Available online: https://www.who.int/tdr/publications/microscopy_detec_ident_quantif/en/ (accessed on 18 October 2021).
- World Health Organization. World Malaria Report 2020: 20 Years of Global Progress and Challenges; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020 (accessed on 12 October 2021).
- Mahende, C.; Ngasala, B.; Lusingu, J.; Yong, T.S.; Lushino, P.; Lemnge, M.; Mmbando, B.; Premji, Z. Performance of rapid diagnostic test, blood-film microscopy and PCR for the diagnosis of malaria infection among febrile children from Korogwe District, Tanzania. Malar. J. 2016, 15, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. World Health Report 2013: Research for Universal Health Coverage. Available online: https://apps.who.int/iris/handle/10665/85761 (accessed on 18 October 2021).
- Singh, N.; Sharma, R.K. Improving diagnosis and treatment of uncomplicated malaria. Lancet Glob. Health 2014, 2, e304–e305. [Google Scholar] [CrossRef] [Green Version]
- Imwong, M.; Hanchana, S.; Malleret, B.; Rénia, L.; Day, N.P.; Dondorp, A.; Nosten, F.; Snounou, G.; White, N.J. High-throughput ultrasensitive molecular techniques for quantifying low-density malaria parasitemias. J. Clin. Microbiol. 2014, 52, 3303–3309. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.; Wongsrichanalai, C.; Barnwell, J.W. Ensuring quality and access for malaria diagnosis: How can it be achieved? Nat. Rev. Microbiol. 2006, 4, 682–695. [Google Scholar] [CrossRef]
- Krampa, F.D.; Aniweh, Y.; Awandare, G.A.; Kanyong, P. Recent Progress in the Development of Diagnostic Tests for Malaria. Diagnostics 2017, 7, 54. [Google Scholar] [CrossRef]
- World Health Organization. Malaria Rapid Diagnostic Test Performance: Results of WHO Product Testing of Malaria RDTs: Round 3 (2010–2011); World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Kobayashi, T.; Gamboa, D.; Ndiaye, D.; Cui, L.; Sutton, P.L.; Vinetz, J.M. Malaria diagnosis across the International Centers of Excellence for Malaria Research: Platforms, performance, and standardization. Am. J. Trop. Med. Hyg. 2015, 93 (Suppl. S3), 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jejaw Zeleke, A.; Hailu, A.; Bayih, A.G.; Kefale, M.; Amare, A.T.; Tegegne, Y.; Aemero, M. Plasmodium falciparum histidine-rich protein 2 and 3 genes deletion in global settings (2010–2021): A systematic review and meta-analysis. Malar. J. 2022, 21, 26. [Google Scholar] [CrossRef]
- Oboh, M.A.; Oriero, E.C.; Ndiaye, T.; Badiane, A.S.; Ndiaye, D.; Amambua-Ngwa, A. Comparative analysis of four malaria diagnostic tools and implications for malaria treatment in southwestern Nigeria. Int. J. Infect. Dis. 2021, 108, 377–381. [Google Scholar] [CrossRef]
- Lau, Y.L.; Lai, M.Y.; Fong, M.Y.; Jelip, J.; Mahmud, R. Loop-mediated isothermal amplification assay for identification of five human Plasmodium species in Malaysia. Am. J. Trop. Med. Hyg. 2016, 94, 336. [Google Scholar] [CrossRef] [Green Version]
- Shakely, D.; Elfving, K.; Aydin-Schmidt, B.; Msellem, M.I.; Morris, U.; Omar, R.; Weiping, X.; Petzold, M.; Greenhouse, B.; Baltzell, K.A.; et al. The usefulness of rapid diagnostic tests in the new context of low malaria transmission in Zanzibar. PLoS ONE 2013, 8, e72912. [Google Scholar] [CrossRef]
- Ogunfowokan, O.; Nwajei, A.I.; Ogunfowokan, B.A. Sensitivity and specificity of malaria rapid diagnostic test (mRDT CareStatTM) compared with microscopy amongst under five children attending a primary care clinic in southern Nigeria. Afr. J. Prim. Health Care Fam. Med. 2020, 12, e1–e8. [Google Scholar] [CrossRef] [PubMed]
- Karthik, L.; Kumar, G.; Keswani, T.; Bhattacharyya, A.; Chandar, S.S.; Bhaskara Rao, K.V. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS ONE 2014, 9, e90972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olugbamila, O.B. Spatial Distribution and Accessibility to Healthcare Facilities in Akure South Local Government Area of Ondo State, Nigeria. An. Univ. Din Oradea Ser. Geogr. 2018, 28, 7–18. [Google Scholar]
- Geonames Geographical Database. Population of Akure, Nigeria. 2021. Available online: http://population.mongabay.com/population/nigeria/2350841/Akure (accessed on 10 March 2022).
- Awosolu, O.B.; Yahaya, Z.S.; Haziqah, M.T. Prevalence, Parasite Density and Determinants of Falciparum Malaria Among Febrile Children in Some Peri-Urban Communities in Southwestern Nigeria: A Cross-Sectional Study. Infect. Drug Resist. 2021, 14, 3219. [Google Scholar] [CrossRef]
- Araoye, M.O. Sample size determination. Research methodology with statistics for health and social sciences. Adv. Biosci. Biotechnol. 2004, 8, 115–121. [Google Scholar]
- Cheesbrough, M. District Laboratory Practice in Tropical Countries, 2nd ed.; Cambridge University Press: Edinburgh, UK, 2005; update Part 1; pp. 239–242. [Google Scholar]
- Atroosh, W.M.; Al-Mekhlafi, H.M.; Al-Jasari, A.; Sady, H.; Al-Delaimy, A.K.; Nasr, N.A.; Dawaki, S.; Abdulsalam, A.M.; Ithoi, I.; Lau, Y.L.; et al. Genetic variation of pfhrp 2 in Plasmodium falciparum isolates from Yemen and the performance of HRP2-based malaria rapid diagnostic test. Parasites Vectors 2015, 8, 388. [Google Scholar] [CrossRef] [Green Version]
- Snounou, G.; Singh, B. Nested PCR analysis of Plasmodium parasites. In Malaria Methods and Protocols; Humana Press: Totowa, NJ, USA, 2002; pp. 189–203. [Google Scholar]
- Cunningham, J.; Gatton, M.; Kolaczinski, K. Malaria Rapid Diagnostic Test Performance: Results of WHO Product Testing of Malaria RDTs: Round 7 (2015–2016); World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Federal Ministry of Health. National Guidelines for Diagnosis and Treatment of Malaria, 3rd ed.; The Federal Ministry of Health, National Malaria and Vector Control Division: Abuja, Nigeria, 2015.
- Zimmerman, P.A.; Howes, R.E. Malaria diagnosis for malaria elimination. Curr. Opin. Infect. Dis. 2015, 28, 446–454. [Google Scholar] [CrossRef]
- Mbanefo, A.; Kumar, N. Evaluation of malaria diagnostic methods as a key for successful control and elimination programs. Trop. Med. Infect. Dis. 2020, 5, 102. [Google Scholar] [CrossRef]
- Taghdiri, A.; Almani, P.G.; Sharifi, I.; Mohammadi, M.A.; Salari, S. Detection of malaria with light microscopy and Nested polymerase chain reaction (Nested PCR) methods in peripheral blood expansions and investigation of the genetic diversity of Plasmodium species by 18S rRNA gene in Southeast of Iran. Microb. Pathog. 2019, 137, 103782. [Google Scholar] [CrossRef]
- Ojurongbe, O.; Adegbosin, O.O.; Taiwo, S.S.; Alli, O.A.; Olowe, O.A.; Ojurongbe, T.A.; Bolaji, O.S.; Adeyeba, O.A. Assessment of clinical diagnosis, microscopy, rapid diagnostic tests, and polymerase chain reaction in the diagnosis of Plasmodium falciparum in Nigeria. Malar. Res. Treat. 2013, 2013, 308069. [Google Scholar] [CrossRef] [Green Version]
- Oriero, E.C.; Olukosi, A.Y.; Oduwole, O.A.; Djimde, A.; D’Alessandro, U.; Meremikwu, M.M.; Amambua-Ngwa, A. Seroprevalence and parasite rates of Plasmodium malariae in a high malaria transmission setting of southern Nigeria. Am. J. Trop. Med. Hyg. 2020, 103, 2208. [Google Scholar] [CrossRef] [PubMed]
- Acquah, F.K.; Donu, D.; Obboh, E.K.; Bredu, D.; Mawuli, B.; Amponsah, J.A.; Quartey, J.; Amoah, L.E. Diagnostic performance of an ultrasensitive HRP2-based malaria rapid diagnostic test kit used in surveys of afebrile people living in Southern Ghana. Malar. J. 2021, 20, 125. [Google Scholar] [CrossRef] [PubMed]
- Amoah, L.E.; Asare, K.K.; Dickson, D.; Anang, S.F.; Busayo, A.; Bredu, D.; Asumah, G.; Peprah, N.; Asamoah, A.; Abuaku, B.; et al. Nationwide molecular surveillance of three Plasmodium species harboured by symptomatic malaria patients living in Ghana. Parasites Vectors 2022, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Assefa, A.; Ahmed, A.A.; Deressa, W.; Wilson, G.G.; Kebede, A.; Mohammed, H.; Sassine, M.; Haile, M.; Dilu, D.; Teka, H.; et al. Assessment of subpatent Plasmodium infection in northwestern Ethiopia. Malar. J. 2020, 19, 108. [Google Scholar] [CrossRef] [Green Version]
- Belachew, M.; Wolde, M.; Nega, D.; Gidey, B.; Negash, L.; Assefa, A.; Tasew, G.; Woyessa, A.; Abera, A. Evaluating performance of multiplex real time PCR for the diagnosis of malaria at elimination targeted low transmission settings of Ethiopia. Malar. J. 2022, 21, 9. [Google Scholar] [CrossRef]
- Nundu, S.S.; Culleton, R.; Simpson, S.V.; Arima, H.; Muyembe, J.J.; Mita, T.; Ahuka, S.; Yamamoto, T. Malaria parasite species composition of Plasmodium infections among asymptomatic and symptomatic school-age children in rural and urban areas of Kinshasa, Democratic Republic of Congo. Malar. J. 2021, 20, 389. [Google Scholar] [CrossRef]
- Siwal, N.; Singh, U.S.; Dash, M.; Kar, S.; Rani, S.; Rawal, C.; Singh, R.; Anvikar, A.R.; Pande, V.; Das, A. Malaria diagnosis by PCR revealed differential distribution of mono and mixed species infections by Plasmodium falciparum and P. vivax in India. PLoS ONE 2018, 13, e0193046. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Soni, P.; Kumar, L.; Singh, M.P.; Verma, A.K.; Sharma, A.; Das, A.; Bharti, P.K. Comparison of polymerase chain reaction, microscopy, and rapid diagnostic test in malaria detection in a high burden state (Odisha) of India. Pathog. Glob. Health 2021, 115, 267–272. [Google Scholar] [CrossRef]
- Kiyonga Aimeé, K.; Lengu, T.B.; Nsibu, C.N.; Umesumbu, S.E.; Ngoyi, D.M.; Chen, T. Molecular detection and species identification of Plasmodium spp. infection in adults in the Democratic Republic of Congo: A population-based study. PLoS ONE 2020, 15, e0242713. [Google Scholar] [CrossRef]
- World Health Organization. World Malaria Report 2018; World Health Organization: Geneva, Switzerland, 2018; Available online: https://www.who.int/malaria/publications/world-malaria-report-2018/en/ (accessed on 5 March 2021).
- World Health Organization. The Use of Malaria Rapid Diagnostic Tests; WHO Regional Office for the Western Pacific: Manila, Philippines, 2004. [Google Scholar]
- Mekonnen, S.K.; Aseffa, A.; Medhin, G.; Berhe, N.; Velavan, T.P. Re-evaluation of microscopy confirmed Plasmodium falciparum and Plasmodium vivax malaria by nested PCR detection in southern Ethiopia. Malar. J. 2014, 13, 48. [Google Scholar] [CrossRef] [Green Version]
- Fagbamigbe, A.F. On the discriminatory and predictive accuracy of the RDT against the microscopy in the diagnosis of malaria among under-five children in Nigeria. Malar. J. 2019, 18, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyabayinze, D.J.; Zongo, I.; Cunningham, J.; Gatton, M.; Angutoko, P.; Ategeka, J.; Compaore, Y.D.; Muehlenbachs, A.; Mulondo, J.; Nakalembe, M.; et al. HRP2 and pLDH-based rapid diagnostic tests, expert microscopy, and PCR for detection of malaria infection during pregnancy and at delivery in areas of varied transmission: A prospective cohort study in Burkina Faso and Uganda. PLoS ONE 2016, 11, e0156954. [Google Scholar] [CrossRef]
- Vásquez, A.M.; Medina, A.C.; Tobón-Castaño, A.; Posada, M.; Vélez, G.J.; Campillo, A.; Gonzalez, I.J.; Ding, X. Performance of a highly sensitive rapid diagnostic test (HS-RDT) for detecting malaria in peripheral and placental blood samples from pregnant women in Colombia. PLoS ONE 2018, 13, e0201769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yimam, Y.; Mohebali, M.; Abbaszadeh Afshar, M.J. Comparison of diagnostic performance between conventional and ultrasensitive rapid diagnostic tests for diagnosis of malaria: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0263770. [Google Scholar] [CrossRef] [PubMed]
- Umunnakwe, F.A.; Idowu, E.T.; Ajibaye, O.; Etoketim, B.; Akindele, S.; Shokunbi, A.O.; Otubanjo, O.A.; Awandare, G.A.; Amambua-Ngwa, A.; Oyebola, K.M. High cases of submicroscopic Plasmodium falciparum infections in a suburban population of Lagos, Nigeria. Malar. J. 2019, 18, 433. [Google Scholar] [CrossRef] [Green Version]
- Moody, A. Rapid diagnostic tests for malaria parasites. Clin. Microbiol. Rev. 2002, 15, 66–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochola, L.B.; Vounatsou, P.; Smith, T.; Mabaso, M.L.; Newton, C.R. The reliability of diagnostic techniques in the diagnosis and management of malaria in the absence of a gold standard. Lancet Infect. Dis. 2006, 6, 582–588. [Google Scholar] [CrossRef]
- Ishengoma, D.S.; Francis, F.; Mmbando, B.P.; Lusingu, J.P.; Magistrado, P.; Alifrangis, M.; Theander, T.G.; Bygbjerg, I.C.; Lemnge, M.M. Accuracy of malaria rapid diagnostic tests in community studies and their impact on treatment of malaria in an area with declining malaria burden in north-eastern Tanzania. Malar. J. 2011, 10, 176. [Google Scholar] [CrossRef] [Green Version]
- Ranadive, N.; Kunene, S.; Darteh, S.; Ntshalintshali, N.; Nhlabathi, N.; Dlamini, N.; Chitundu, S.; Saini, M.; Murphy, M.; Soble, A.; et al. Limitations of rapid diagnostic testing in patients with suspected malaria: A diagnostic accuracy evaluation from Swaziland, a low-endemicity country aiming for malaria elimination. Clin. Infect. Dis. 2017, 64, 1221–1227. [Google Scholar] [CrossRef]
- Landier, J.; Parker, D.M.; Thu, A.M.; Lwin, K.M.; Delmas, G.; Nosten, F.H.; Andolina, C.; Aguas, R.; Ang, S.M.; Aung, E.P.; et al. Effect of generalised access to early diagnosis and treatment and targeted mass drug administration on Plasmodium falciparum malaria in Eastern Myanmar: An observational study of a regional elimination programme. Lancet 2018, 391, 1916–1926. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, N.E.; Gruenberg, M.; Nate, E.; Ura, A.; Rodriguez-Rodriguez, D.; Salib, M.; Mueller, I.; Smith, T.A.; Laman, M.; Robinson, L.J.; et al. Assessment of ultra-sensitive malaria diagnosis versus standard molecular diagnostics for malaria elimination: An in-depth molecular community cross-sectional study. Lancet Infect. Dis. 2018, 18, 1108–1116. [Google Scholar] [CrossRef]
- Girma, S.; Cheaveau, J.; Mohon, A.N.; Marasinghe, D.; Legese, R.; Balasingam, N.; Abera, A.; Feleke, S.M.; Golassa, L.; Pillai, D.R. Prevalence and epidemiological characteristics of asymptomatic malaria based on ultrasensitive diagnostics: A cross-sectional study. Clin. Infect. Dis. 2019, 69, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- McMorrow, M.L.; Aidoo, M.; Kachur, S.P. Malaria rapid diagnostic tests in elimination settings—Can they find the last parasite? Clin. Microbiol. Infect. 2011, 17, 1624–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Msellem, M.I.; Mårtensson, A.; Rotllant, G.; Bhattarai, A.; Strömberg, J.; Kahigwa, E.; Garcia, M.; Petzold, M.; Olumese, P.; Ali, A.; et al. Influence of rapid malaria diagnostic tests on treatment and health outcome in fever patients, Zanzibar—A crossover validation study. PLoS Med. 2009, 6, e1000070. [Google Scholar] [CrossRef]
- Golassa, L.; Enweji, N.; Erko, B.; Aseffa, A.; Swedberg, G. Detection of a substantial number of sub-microscopic Plasmodium falciparum infections by polymerase chain reaction: A potential threat to malaria control and diagnosis in Ethiopia. Malar. J. 2013, 12, 352. [Google Scholar] [CrossRef] [Green Version]
- Kyabayinze, D.J.; Tibenderana, J.K.; Odong, G.W.; Rwakimari, J.B.; Counihan, H. Operational accuracy and comparative persistent antigenicity of HRP2 rapid diagnostic tests for Plasmodium falciparum malaria in a hyperendemic region of Uganda. Malar. J. 2008, 7, 221. [Google Scholar] [CrossRef] [Green Version]
- Mbabazi, P.; Hopkins, H.; Osilo, E.; Kalungu, M.; Byakika-Kibwika, P.; Kamya, M.R. Accuracy of two malaria rapid diagnostic tests (RDTS) for initial diagnosis and treatment monitoring in a high transmission setting in Uganda. Am. J. Trop. Med. Hyg. 2015, 92, 530. [Google Scholar] [CrossRef] [Green Version]
- Ochola, L.B.; Marsh, K.; Lowe, B.; Gal, S.; Pluschke, G.; Smith, T. Estimation of the sequestered parasite load in severe malaria patients using both host and parasite markers. Parasitology 2005, 131, 449–458. [Google Scholar] [CrossRef]
- Luchavez, J.; Baker, J.; Alcantara, S.; Belizario, V.; Cheng, Q.; McCarthy, J.S.; Bell, D. Laboratory demonstration of a prozone-like effect in HRP2-detecting malaria rapid diagnostic tests: Implications for clinical management. Malar. J. 2011, 10, 286. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Gatton, M.L.; Barnwell, J.; Chiodini, P.; McCarthy, J.; Bell, D.; Cunningham, J. Plasmodium falciparum parasites lacking histidine-rich protein 2 and 3: A review and recommendations for accurate reporting. Malar. J. 2014, 13, 283. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. World Malaria Report 2017; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Starzengruber, P.; Fuehrer, H.P.; Ley, B.; Thriemer, K.; Swoboda, P.; Habler, V.E.; Jung, M.; Graninger, W.; Khan, W.A.; Haque, R.; et al. High prevalence of asymptomatic malaria in south-eastern Bangladesh. Malar. J. 2014, 13, 16. [Google Scholar] [CrossRef] [PubMed]
Genus/Species | PCR Product | Primers | Primer Sequence 5′-3′ | Reaction |
---|---|---|---|---|
Plasmodium genus | 1200 kb | rPLU1 | TCAAAGATTAAGCCATGCAAGTGA | Nested 1 |
rPLU5 | CCTGTTGTTGCCTTAAACTCC | |||
Plasmodium genus | 235 bp | rPLU3 | TTTTATAAGGATAACTACGGAAAAGCTGT | Nested 2 |
rPLU4 | TACCCGTCATAGCCATGTTAGGCCAATACC | |||
Plasmodium species | 205 bp | FAL1 | TTAAACTGGTTTGGGAAAACCAAATATATT | Nested 2 |
P. falciparum | FAL2 | ACACAATGAACTCAATCATGACTACCCGTC | ||
P. malaria | 144 bp | MAL1 | ATAACATAGTTGTACGTTAAGAATAACCGC | Nested 2 |
MAL2 | AAAATTCCCATGCATAAAAAATTATACAAA | |||
P. vivax | 120 bp | VIV1 | CGCTTCTAGCTTAATCCACATAACTGATAC | Nested 2 |
VIV2 | ACTTCCAAGCCGAAGCAAAGAAAGTCCTTA | |||
P. ovale | 226 bp | OVA1 | ATCTCTTTTGCTATTTTTTAGTATTGGAGA | Nested 2 |
OVA2 | GGAAAAGGACACATTAATTGTATCCTAGTG |
Variables | Study Sites | Total n (%) | |||
---|---|---|---|---|---|
Orita Obele Health Center n (%) | FUTA Health Centre n (%) | State Specialist Hospital n (%) | Don Bosco Health Centre n (%) | ||
Sex | |||||
Male | - | 152 (74.9) | 123 (62.4) | 66 (65.3) | 341 (56.7) |
Female | 100 (100) | 51 (25.1) | 74 (37.6) | 35 (34.7) | 260 (43.3) |
Total | 100 | 203 | 197 | 101 | 601 |
Age groups (years) | |||||
≤12 | - | 1 (0.5) | 43 (21.8) | 17 (16.8) | 61 (10.1) |
13–19 | 17 (17.0) | 102 (50.2) | 81 (41.1) | 30 (29.7) | 230 (38.3) |
≥20 | 83 (83.0) | 100 (49.3) | 73 (37.1) | 54 (53.5) | 310 (51.6) |
Total | 100 | 203 | 197 | 101 | 601 |
Nested Polymerase Chain Reaction (PCR) | Total | |||
---|---|---|---|---|
Positive | Negative | |||
Microscopy | Positive | 390 | 0 | 390 (64.89) |
Negative | 15 | 196 | 211 (35.11) | |
RDT | Positive | 385 | 10 | 395 (65.72) |
Negative | 20 | 186 | 206 (34.28) | |
Total | 405 (67.38) | 196 (32.61) | 601 (100.00) |
Test Variables | Microscopy | PfHRP2 RDT |
---|---|---|
TP (PCR = 405) | 390 (100.00) | 385 (95.10) |
FP (PCR negative) | 0 | 10 (5.10) |
TN (PCR = 196) | 196 (92.90) | 186 (94.9) |
FN (PCR positive) | 15 (3.70) | 20 (4.94) |
Sensitivity (95% C.I) | 96.30 (93.98–97.74) | 95.06 (92.50–96.78) |
Specificity (95% C.I) | 100.00 (98.08–100.00) | 94.90 (90.86–97.21) |
PPV (95% C.I) | 100.00 (99.02–100.00) | 97.47 (95.40–98.62) |
NPV (95% C.I) | 92.89 (88.60–95.64) | 90.29 (85.48–93.63) |
Accuracy (%) | 97.50 | 95.01 |
Cohen’s Kappa (K) | 0.94 | 0.88 |
Youden Index (J) | 0.963 | 0.8996 |
p-value | <0.0001 | <0.0001 |
Age (Years) | Sensitivity (95% C.I) | Specificity (95% C.I) | PPV (95% C.I) | NPV (95% C.I) | p Value | |
---|---|---|---|---|---|---|
Microscopy | ≤12 | 100.00 (92.44–100.00) | 100.00 (78.47–100.00) | 100.00 (92.44–100.00) | 100.00 (78.47–100.00) | <0.0001 |
13–19 | 97.53 (93.82–99.04) | 100.00 (94.65–100.00) | 100.00 (97.63–100.00) | 94.44 (86.57–97.82) | <0.0001 | |
≥20 | 94.39 (90.23–96.84) | 100.00 (96.74–100.00) | 100.00 (97.97–100.00) | 91.20 (84.93–95.02) | <0.0001 | |
Malaria RDT | ≤12 | 100.00 (92.44–100.00) | 100.00 (78.47–100.00) | 100.00 (92.44–100.00) | 100.00 (78.47–100.00) | <0.0001 |
13–19 | 96.30 (92.16–98.29) | 95.59 (87.81–98.80) | 98.11 (94.60–99.49) | 91.55 (82.76–96.07) | <0.0001 | |
≥20 | 92.86 (88.37–95.70) | 93.86 (87.87–96.99) | 96.30 (92.55–98.19) | 88.43 (81.51–92.98) | <0.0001 |
Parasite Density Levels (Parasite/μL) | Microscopy | PfHRP2 RDT | PCR |
---|---|---|---|
<10 (submicroscopic) | 0 | 0 | 15 |
51–100 (low) | 5 | 0 | 5 |
101–200 (low) | 3 | 3 | 3 |
201–500 (low) | 124 | 124 | 124 |
501–999 (low) | 98 | 98 | 98 |
1000–9999 (moderate) | 155 | 155 | 155 |
≥10,000 (severe) | 5 | 5 | 5 |
Total | 390 | 385 | 405 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awosolu, O.B.; Yahaya, Z.S.; Farah Haziqah, M.T.; Olusi, T.A. Performance Evaluation of Nested Polymerase Chain Reaction (Nested PCR), Light Microscopy, and Plasmodium falciparum Histidine-Rich Protein 2 Rapid Diagnostic Test (PfHRP2 RDT) in the Detection of Falciparum Malaria in a High-Transmission Setting in Southwestern Nigeria. Pathogens 2022, 11, 1312. https://doi.org/10.3390/pathogens11111312
Awosolu OB, Yahaya ZS, Farah Haziqah MT, Olusi TA. Performance Evaluation of Nested Polymerase Chain Reaction (Nested PCR), Light Microscopy, and Plasmodium falciparum Histidine-Rich Protein 2 Rapid Diagnostic Test (PfHRP2 RDT) in the Detection of Falciparum Malaria in a High-Transmission Setting in Southwestern Nigeria. Pathogens. 2022; 11(11):1312. https://doi.org/10.3390/pathogens11111312
Chicago/Turabian StyleAwosolu, Oluwaseun Bunmi, Zary Shariman Yahaya, Meor Termizi Farah Haziqah, and Titus Adeniyi Olusi. 2022. "Performance Evaluation of Nested Polymerase Chain Reaction (Nested PCR), Light Microscopy, and Plasmodium falciparum Histidine-Rich Protein 2 Rapid Diagnostic Test (PfHRP2 RDT) in the Detection of Falciparum Malaria in a High-Transmission Setting in Southwestern Nigeria" Pathogens 11, no. 11: 1312. https://doi.org/10.3390/pathogens11111312
APA StyleAwosolu, O. B., Yahaya, Z. S., Farah Haziqah, M. T., & Olusi, T. A. (2022). Performance Evaluation of Nested Polymerase Chain Reaction (Nested PCR), Light Microscopy, and Plasmodium falciparum Histidine-Rich Protein 2 Rapid Diagnostic Test (PfHRP2 RDT) in the Detection of Falciparum Malaria in a High-Transmission Setting in Southwestern Nigeria. Pathogens, 11(11), 1312. https://doi.org/10.3390/pathogens11111312