Sublingual Immunotherapy for Japanese Cedar Pollinosis: Current Clinical and Research Status
Abstract
:1. Introduction
2. Characteristics of JC Pollinosis in Japan
3. General Drug Treatment for JC Pollinosis
4. AIT for JC Pollinosis
5. Clinical Effects of JC Pollen SLIT for JC Pollinosis
During Treatment | After Treatment | ||||
---|---|---|---|---|---|
Year | 1st | 2nd | 3rd | 4th | 5th |
JC pollen SLIT drop | 18% ** | 30% ** | |||
JC pollen SLIT tablet | 32.1% * | 45.1% * | 46.3% * | 45.3% * | 34.0% ** |
6. Mechanisms and Factors Related to the Clinical Efficacy of SLIT
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okubo, K.; Kurono, Y.; Ichimura, K.; Enomoto, T.; Okamoto, Y.; Kawauchi, H.; Suzaki, H.; Fujieda, S.; Masuyama, K.; Japanese Society of Allergology. Japanese guidelines for allergic rhinitis 2020. Allergol. Int. 2020, 69, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, A.; Sakashita, M.; Gotoh, M.; Kawashima, K.; Matsuoka, T.; Kondo, S.; Yamada, T.; Takeno, Y.; Takeuchi, K.; Urashima, M.; et al. Epidemiological survey of allergic rhinitis in Japan 2019. J. Otolaryngol. Jpn. 2020, 123, 485–490. [Google Scholar] [CrossRef]
- Baba, K.; Nakae, K. National epidemiological survey of nasal allergy 2008 (compared with 1998) in otolaryngologists and their family members. Prog. Med. 2008, 28, 2001–2012. [Google Scholar]
- Sakashita, M.; Tsutsumiuchi, T.; Kubo, S.; Tokunaga, T.; Takabayashi, T.; Imoto, Y.; Kato, Y.; Yoshida, K.; Kimura, Y.; Kato, Y.; et al. Comparison of sensitization and prevalence of Japanese cedar pollen and mite-induced perennial allergic rhinitis between 2006 and 2016 in hospital workers in Japan. Allergol. Int. 2021, 70, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Yonekura, S.; Okamoto, Y.; Horiguchi, S.; Sakurai, D.; Chazono, H.; Hanazawa, T.; Okawa, T.; Aoki, S.; Konno, A. Effects of aging on the natural history of seasonal allergic rhinitis in middle-aged subjects in South chiba, Japan. Int. Arch. Allergy Immunol. 2012, 157, 73–80. [Google Scholar] [CrossRef]
- Saito, Y. Japanese cedar pollinosis: Discovery, nomenclature, and epidemiological trends. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2014, 90, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Hamasaki, S.; Okamoto, Y.; Yonekura, S.; Okuma, Y.; Sakurai, T.; Iinuma, T.; Yamamoto, H.; Sakurai, D.; Horiguchi, S.; Yokota, M. Characteristics of the Chiba environmental challenge chamber. Allergol. Int. 2014, 63, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Osada, T.; Okano, M. Japanese cedar and cypress pollinosis updated: New allergens, cross-reactivity, and treatment. Allergol. Int. 2021, 70, 281–290. [Google Scholar] [CrossRef]
- Yamada, T.; Saito, H.; Fujieda, S. Present state of Japanese cedar pollinosis: The national affliction. J. Allergy Clin. Immunol. 2014, 133, 632–639.e5. [Google Scholar] [CrossRef]
- Honda, K.; Saito, H.; Fukui, N.; Ito, E.; Ishikawa, K. The relationship between pollen count levels and prevalence of Japanese cedar pollinosis in Northeast Japan. Allergol. Int. 2013, 62, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Okubo, K.; Okano, M.; Sato, N.; Tamaki, Y.; Suzuki, H.; Uddin, A.; Fogel, R. Add-On Omalizumab for Inadequately Controlled Severe Pollinosis Despite Standard-of-Care: A Randomized Study. J. Allergy Clin. Immunol. Pract. 2020, 8, 3130–3140.e2. [Google Scholar] [CrossRef]
- Gotoh, M.; Okubo, K.; Yuta, A.; Ogawa, Y.; Nagakura, H.; Ueyama, S.; Ueyama, T.; Kawashima, K.; Yamamoto, M.; Fujieda, S.; et al. Safety profile and immunological response of dual sublingual immunotherapy with house dust mite tablet and Japanese cedar pollen tablet. Allergol. Int. 2020, 69, 104–110. [Google Scholar] [CrossRef]
- Matsuoka, T.; Igarashi, S.; Kuroda, Y.; Fukano, C.; Natsui, K.; Doi-Ohashi, K.; Masuyama, K. Dual sublingual immunotherapy with Japanese Cedar Pollen droplets and House Dust Mite tablets. Allergol. Int. 2019, 68, 533–535. [Google Scholar] [CrossRef]
- Okamoto, Y.; Okubo, K.; Yonekura, S.; Hashiguchi, K.; Goto, M.; Otsuka, T.; Murata, T.; Nakao, Y.; Kanazawa, C.; Nagakura, H.; et al. Efficacy and safety of sublingual immunotherapy for two seasons in patients with Japanese cedar pollinosis. Int. Arch. Allergy Immunol. 2015, 166, 177–188. [Google Scholar] [CrossRef]
- Gotoh, M.; Yonekura, S.; Imai, T.; Kaneko, S.; Horikawa, E.; Konno, A.; Okamoto, Y.; Okubo, K. Long-Term Efficacy and Dose-Finding Trial of Japanese Cedar Pollen Sublingual Immunotherapy Tablet. J. Allergy Clin. Immunol. Pract. 2019, 7, 1287–1297.e8. [Google Scholar] [CrossRef]
- Yonekura, S.; Gotoh, M.; Kaneko, S.; Kanazawa, K.; Takeuji, Y.; Okubo, K.; Okamoto, Y. Treatment duration-dependent efficacy of Japanese cedar pollen sublingual immunotherapy: Evaluation of a phase II/III trial over three pollen dispersal seasons. Allergol. Int. 2019, 68, 494–505. [Google Scholar] [CrossRef]
- Yonekura, S.; Gotoh, M.; Kaneko, S.; Maekawa, Y.; Okubo, K.; Okamoto, Y. Disease-Modifying Effect of Japanese Cedar Pollen Sublingual Immunotherapy Tablets. J. Allergy Clin. Immunol. Pract. 2021, 9, 4103–4116.e14. [Google Scholar] [CrossRef]
- Durham, S.R.; Emminger, W.; Kapp, A.; de Monchy, J.G.; Rak, S.; Scadding, G.K.; Wurtzen, P.A.; Andersen, J.S.; Tholstrup, B.; Riis, B.; et al. SQ-standardized sublingual grass immunotherapy: Confirmation of disease modification 2 years after 3 years of treatment in a randomized trial. J. Allergy Clin. Immunol. 2012, 129, 717–725.e5. [Google Scholar] [CrossRef] [Green Version]
- Didier, A.; Malling, H.J.; Worm, M.; Horak, F.; Sussman, G.L. Prolonged efficacy of the 300IR 5-grass pollen tablet up to 2 years after treatment cessation, as measured by a recommended daily combined score. Clin. Transl. Allergy 2015, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Bozek, A.; Foks, A.; Trzaska, K.; Canonica, G.W. Long-term effects of allergen sublingual immunotherapy. Postepy Dermatol. Alergol. 2020, 37, 943–947. [Google Scholar] [CrossRef] [Green Version]
- Yonekura, S.; Gotoh, M.; Okano, M.; Kurokawa, T.; Maekawa, Y.; Okubo, K.; Okamoto, Y. Japanese cedar pollen sublingual immunotherapy is effective in treating seasonal allergic rhinitis during the pollen dispersal period for Japanese cedar and Japanese cypress. Allergol. Int. 2022, 71, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Komiyama, N.; Itoh, M.; Itoh, H.; Sone, T.; Kino, K.; Takagi, I.; Ohta, N. Purification, characterization and molecular cloning of Cha o 1, a major allergen of Chamaecyparis obtusa (Japanese cypress) pollen. Mol. Immunol. 1996, 33, 451–460. [Google Scholar] [CrossRef]
- Mori, T.; Yokoyama, M.; Komiyama, N.; Okano, M.; Kino, K. Purification, identification, and cDNA cloning of Cha o 2, the second major allergen of Japanese cypress pollen. Biochem. Biophys. Res. Commun. 1999, 263, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Okuda, M. A long-term follow-up study after discontinuation of immunotherapy for Japanese cedar pollinosis. Jpn. J. Allergol. 2006, 55, 655–661. [Google Scholar]
- Tofukuji, S.; Katayama, K.; Nakano, Y.; Ishida, S.; Tsuchida, J.; Tajiri, M.; Shimo, Y.; Tanaka, H.; Shichijo, M. Allergen-specific sublingual immunotherapy is dose and duration dependent in a murine allergic rhinitis model. J. Allergy Clin. Immunol. 2018, 142, 1977–1979.e9. [Google Scholar] [CrossRef] [Green Version]
- Alvaro-Lozano, M.; Akdis, C.A.; Akdis, M.; Alviani, C.; Angier, E.; Arasi, S.; Arzt-Gradwohl, L.; Barber, D.; Bazire, R.; Cavkaytar, O.; et al. EAACI Allergen Immunotherapy User’s Guide. Pediatr. Allergy Immunol. 2020, 31 (Suppl S25), 1–101. [Google Scholar] [CrossRef]
- Tan, T.J.; Layhadi, J.A.; Shamji, M.H. Mechanisms and biomarkers of subcutaneous immunotherapy and sublingual immunotherapy in allergen immunotherapy. Allergy Asthma Proc. 2022, 43, 254–259. [Google Scholar] [CrossRef]
- Mitthamsiri, W.; Pradubpongsa, P.; Sangasapaviliya, A.; Boonpiyathad, T. Decreased CRTH2 Expression and Response to Allergen Re-stimulation on Innate Lymphoid Cells in Patients with Allergen-Specific Immunotherapy. Allergy Asthma Immunol. Res. 2018, 10, 662–674. [Google Scholar] [CrossRef]
- Eljaszewicz, A.; Ruchti, F.; Radzikowska, U.; Globinska, A.; Boonpiyathad, T.; Gschwend, A.; Morita, H.; Helbling, A.; Arasi, S.; Kahlert, H.; et al. Trained immunity and tolerance in innate lymphoid cells, monocytes, and dendritic cells during allergen-specific immunotherapy. J. Allergy Clin. Immunol. 2021, 147, 1865–1877. [Google Scholar] [CrossRef]
- Golebski, K.; Layhadi, J.A.; Sahiner, U.; Steveling-Klein, E.H.; Lenormand, M.M.; Li, R.C.Y.; Bal, S.M.; Heesters, B.A.; Vilà-Nadal, G.; Hunewald, O.; et al. Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity 2021, 54, 291–307.e7. [Google Scholar] [CrossRef]
- Yonekura, S.; Okamoto, Y.; Sakurai, D.; Okubo, K.; Gotoh, M.; Kaneko, S.; Konno, A. An analysis of factors related to the effect of sublingual immunotherapy on Japanese cedar pollen induced allergic rhinitis. Allergol. Int. 2018, 67, 201–208. [Google Scholar] [CrossRef]
- Sakurai, D.; Yonekura, S.; Iinuma, T.; Sakurai, T.; Morimoto, Y.; Mita, Y.; Arai, T.; Suzuki, S.; Okuma, Y.; Kaneko, S.; et al. Sublingual immunotherapy for allergic rhinitis: Subjective versus objective tools to evaluate its success. Rhinology 2016, 54, 221–230. [Google Scholar] [CrossRef]
- Nakayama, T.; Hirahara, K.; Onodera, A.; Endo, Y.; Hosokawa, H.; Shinoda, K.; Tumes, D.J.; Okamoto, Y. Th2 Cells in Health and Disease. Annu. Rev. Immunol. 2017, 35, 53–84. [Google Scholar] [CrossRef]
- Morimoto, Y.; Hirahara, K.; Kiuchi, M.; Wada, T.; Ichikawa, T.; Kanno, T.; Okano, M.; Kokubo, K.; Onodera, A.; Sakurai, D.; et al. Amphiregulin-Producing Pathogenic Memory T Helper 2 Cells Instruct Eosinophils to Secrete Osteopontin and Facilitate Airway Fibrosis. Immunity 2018, 49, 134–150.e6. [Google Scholar] [CrossRef] [Green Version]
- Iinuma, T.; Okamoto, Y.; Morimoto, Y.; Arai, T.; Sakurai, T.; Yonekura, S.; Sakurai, D.; Hirahara, K.; Nakayama, T. Pathogenicity of memory Th2 cells is linked to stage of allergic rhinitis. Allergy 2018, 73, 479–489. [Google Scholar] [CrossRef]
- Ihara, F.; Sakurai, D.; Yonekura, S.; Iinuma, T.; Yagi, R.; Sakurai, T.; Ito, T.; Matsuura, A.; Morimoto, Y.; Arai, T.; et al. Identification of specifically reduced Th2 cell subsets in allergic rhinitis patients after sublingual immunotherapy. Allergy 2018, 73, 1823–1832. [Google Scholar] [CrossRef]
- Iinuma, T.; Kiuchi, M.; Hirahara, K.; Kurita, J.; Kokubo, K.; Yagyu, H.; Yoneda, R.; Arai, T.; Sonobe, Y.; Fukuyo, M.; et al. Single-cell immunoprofiling after immunotherapy for allergic rhinitis reveals functional suppression of pathogenic TH2 cells and clonal conversion. J. Allergy Clin. Immunol. 2022, 150, 850–860.e5. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakurai, D.; Ishii, H.; Shimamura, A.; Watanabe, D.; Yonaga, T.; Matsuoka, T. Sublingual Immunotherapy for Japanese Cedar Pollinosis: Current Clinical and Research Status. Pathogens 2022, 11, 1313. https://doi.org/10.3390/pathogens11111313
Sakurai D, Ishii H, Shimamura A, Watanabe D, Yonaga T, Matsuoka T. Sublingual Immunotherapy for Japanese Cedar Pollinosis: Current Clinical and Research Status. Pathogens. 2022; 11(11):1313. https://doi.org/10.3390/pathogens11111313
Chicago/Turabian StyleSakurai, Daiju, Hiroki Ishii, Ayumi Shimamura, Daisuke Watanabe, Takaaki Yonaga, and Tomokazu Matsuoka. 2022. "Sublingual Immunotherapy for Japanese Cedar Pollinosis: Current Clinical and Research Status" Pathogens 11, no. 11: 1313. https://doi.org/10.3390/pathogens11111313
APA StyleSakurai, D., Ishii, H., Shimamura, A., Watanabe, D., Yonaga, T., & Matsuoka, T. (2022). Sublingual Immunotherapy for Japanese Cedar Pollinosis: Current Clinical and Research Status. Pathogens, 11(11), 1313. https://doi.org/10.3390/pathogens11111313