Evaluation of a PlexZyme-Based PCR Assay and Assessment of COVID-19 Surge Testing Throughput Compared to Cobas SARS-CoV-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Routine Sample Testing
2.2. Validation Panel Characterisation and Preparation
2.3. Cobas and Plex Parallel Testing
2.4. Quantitative Standards and Analysis
2.5. Assessment of Intra- and Inter-Assay Reproducibility
2.6. Assessment of the Lower Limit of Detection
2.7. Assessment of Hands-on Time and Throughput
2.8. Data Analysis
3. Results
3.1. Comparative Evaluation
3.2. Quantitative Standards and Assessment of the Lower Limit of Detection
3.3. Cobas ORF1a and Plex ORF1ab Correlation
3.4. Assessment of Intra- and Inter-Assay Reproducibility
3.5. Assessment of Hands-on Time and Throughput
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ecdc.europa.eu. COVID-19 Situation Update Worldwide, as of Week 52 2020. Available online: https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases (accessed on 1 July 2021).
- Caruana, G.; Croxatto, A.; Coste, A.T.; Opota, O.; Lamoth, F.; Jaton, K.; Greub, G. Diagnostic strategies for SARS-CoV-2 infection and interpretation of microbiological results. Clin. Microbiol. Infect. 2020, 26, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Implementation of Mitigation Strategies for Communities with Local COVID-19 Transmission. Available online: https://www.cdc.gov/coronavirus/2019-ncov/community/community-mitigation.html (accessed on 1 July 2021).
- Pryce, T.M.; Boan, P.A.; Kay, I.D.; Flexman, J.P. Thermal treatment of nasopharyngeal samples before cobas SARS-CoV-2 testing. Clin. Microbiol. Infect. 2021, 27, 149–150. [Google Scholar] [CrossRef] [PubMed]
- Artesi, M.; Bontems, S.; Göbbels, P.; Franckh, M.; Maes, P.; Boreux, R.; Meex, C.; Melin, P.; Hayette, M.P.; Bours, V.; et al. A Recurrent Mutation at Position 26340 of SARS-CoV-2 Is Associated with Failure of the E Gene Quantitative Reverse Transcription-PCR Utilized in a Commercial Dual-Target Diagnostic Assay. J. Clin. Microbiol. 2020, 58, e01598-20. [Google Scholar] [CrossRef] [PubMed]
- Mokany, E.; Tan, Y.L.; Bone, S.M.; Fuery, C.J.; Todd, A.V. MNAzyme qPCR with Superior Multiplexing Capacity. Clin. Chem. 2013, 59, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention, Atlanta GA. Preparation of Viral Transport Medium (SOP#: DSR-052–03). Available online: https://www.cdc.gov/coronavirus/2019-ncov/downloads/Viral-Transport-Medium.pdf (accessed on 1 July 2021).
- Burton, J.; Love, H.; Richards, K.; Burton, C.; Summers, S.; Pitman, J.; Easterbrook, L.; Davies, K.; Spencer, P.; Killip, M.; et al. The effect of heat-treatment on SARS-CoV-2 viability and detection. J. Virol. Methods. 2021, 290, 114087. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wu, R.; Xing, Y.; Du, Q.; Xue, Z.; Xi, Y.; Yang, Y.; Deng, Y.; Han, Y.; Li, K.; et al. Influence of different inactivation methods on severe acute respiratory syndrome coronavirus 2 RNA Copy Number. J. Clin. Microbiol. 2020, 58, e00958-20. [Google Scholar] [CrossRef] [PubMed]
- QConnect. Available online: https://www.nrlquality.org.au/qconnect (accessed on 1 July 2021).
- Hasan, M.R.; Sundararaju, S.; Manickam, C.; Mirza, F.; Al-Hail, H.; Lorenz, S.; Tang, P. A Novel Point Mutation in the N Gene of SARS-CoV-2 May Affect the Detection of the Virus by Reverse Transcription-Quantitative PCR. J. Clin. Microbiol. 2021, 59, e03278-20. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, K.; Steininger, P.; Ziegler, R.; Steinmann, J.; Korn, K.; Ensser, A. SARS-CoV-2 samples may escape detection because of a single point mutation in the N gene. Euro. Surveill. 2020, 25, 2001650. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Hozumi, Y.; Yin, C.; Wei, G.W. Mutations on COVID-19 diagnostic targets. Genomics 2020, 112, 5204–5213. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.; Mueller, R.; Shipley, G.; Nolan, T. COVID-19 and Diagnostic Testing for SARS-CoV-2 by RT-qPCR—Facts and Fallacies. Int. J. Mol. Sci. 2021, 22, 2459. [Google Scholar] [CrossRef] [PubMed]
- Preiksaitis, J.K.; Hayden, R.T.; Tong, Y.; Pang, X.L.; Fryer, J.F.; Heath, A.B.; Cook, L.; Petrich, A.K.; Yu, B.; Caliendo, A.M. Are we there yet? Impact of the first international standard for cytomegalovirus DNA on the harmonization of results reported on plasma samples. Clin. Infect. Dis. 2016, 63, 583–589. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Biological Standards and Control (NIBSC). Available online: https://www.nibsc.org/products/brm_product_catalogue/detail_page.aspx?catid=20/146 (accessed on 1 July 2021).
- Poljak, M.; Korva, M.; Gašper, N.K.; Komloš, K.F.; Sagadin, M.; Uršič, T.; Županc, T.A.; Petrovec, M. Clinical evaluation of the cobas SARS-CoV-2 test and a diagnostic platform switch during 48 h in the midst of the COVID-19 pandemic. J. Clin. Microbiol. 2020, 58, e00599-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, H.L.; Lin, M.C.; Lee, C.H. Comparison of the Roche cobas 6800 SARS-CoV-2 test and the Taiwan CDC protocol for the molecular diagnosis of COVID-19. Biomed. J. 2021, 44, 101–104. [Google Scholar] [CrossRef] [PubMed]
No of Samples with the Following Result by Cobas | ||||
---|---|---|---|---|
Plex Result | Detected (Presumptive) b | Not Detected | Total | SARS-CoV-2 Overall Agreement (%) (95% CI) d |
Detected c | 182 (5) | 1 | 188 | 96.9 (94.7–98.2) |
Not detected | 0 (12) | 215 | 227 | |
Total | 199 | 216 | 415 |
Assay Workflow | Number of Runs | Number of Samples per Run | Total Number of Samples Tested | Total Result Output | Results per Hour a | Hands-on Time (Samples per Min) b |
---|---|---|---|---|---|---|
cobas | 13 | 94 | 1222 | 1222 | 40 | 2.1 |
Plex | 15 | 188 | 2820 | 3102 | 102 | 1.7 |
Plex | 3 | 94 | 282 | |||
Combined total | 4324 | 142 | 3.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pryce, T.M.; Haygarth, E.J.; Bordessa, J.; Boan, P.A. Evaluation of a PlexZyme-Based PCR Assay and Assessment of COVID-19 Surge Testing Throughput Compared to Cobas SARS-CoV-2. Pathogens 2021, 10, 1088. https://doi.org/10.3390/pathogens10091088
Pryce TM, Haygarth EJ, Bordessa J, Boan PA. Evaluation of a PlexZyme-Based PCR Assay and Assessment of COVID-19 Surge Testing Throughput Compared to Cobas SARS-CoV-2. Pathogens. 2021; 10(9):1088. https://doi.org/10.3390/pathogens10091088
Chicago/Turabian StylePryce, Todd M., Erin J. Haygarth, Jessica Bordessa, and Peter A. Boan. 2021. "Evaluation of a PlexZyme-Based PCR Assay and Assessment of COVID-19 Surge Testing Throughput Compared to Cobas SARS-CoV-2" Pathogens 10, no. 9: 1088. https://doi.org/10.3390/pathogens10091088