Prevalence and Genetic Diversity of Group A Rotavirus Genotypes in Moscow (2019–2020)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Samples
4.2. PCR and Sequencing
4.3. Genome Alignment and Phylogenetic Analysis.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Crawford, S.E.; Ramani, S.; Tate, J.E.; Parashar, U.D.; Svensson, L.; Hagbom, M.; Franco, M.A.; Greenberg, H.B.; O’Ryan, M.; Kang, G.; et al. Rotavirus infection. Nat. Rev. Dis. Primers 2017, 3, 17083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tate, J.E.; Burton, A.H.; Boschi-Pinto, C.; Parashar, U.D. World Health Organization-Coordinated Global Rotavirus Surveillance Network. Global, regional, and national estimates of rotavirus mortality in children <5 years of age, 2000–2013. Clin. Infect. Dis. 2016, 62, S96–S105. [Google Scholar]
- Report, State, 2019. On The State of Sanitary and Epidemiological Well-Being of the Population in the Russian Federation in 2018. M.: The Federal Service for Supervision of Consumer Rights Protection and Benefit Receiving a Person. Available online: https://www.rospotrebnadzor.ru/upload/iblock/798/gosudarstvennyy-doklad-o-sostoyanii-sanitarno_epidemiologicheskogo-blagopoluchiya-naseleniya-v-rossiyskoy-federatsii-v-2018-godu.pdf (accessed on 16 November 2020). (Report in Russian).
- Report, State, 2020. On the State of Sanitary and Epidemiological Well-Being of the Population in the Russian Federation in 2019. M.: The Federal Service for Supervision of Consumer Rights Protection and Benefit Receiving a Person. Available online: https://www.rospotrebnadzor.ru/upload/iblock/8e4/gosdoklad-za-2019_seb_29_05.pdf (accessed on 16 November 2020). (Report in Russian).
- Raju, B.; Parikh, R.P.; Vetter, V.V.; Kolhapure, S. Epidemiology of rotavirus gastroenteritis and need of high rotavirus vaccine coverage with early completion of vaccination schedule for protection against rotavirus diarrhea in India: A narrative review. Indian J. Public Health 2019, 63, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Estes, M.; Kapikian, A. Kluwer Health/Lippincott. In Fields Virology; Knipe, D.M., Howley, P.M., Griffin, D.E., Lamb, R.A., Martin, M.A., Roizman, B., Straus, S.E., Eds.; Williams and Wilkins: Philadelphia, PA, USA, 2007; pp. 1917–1974. [Google Scholar]
- ROTAVIRUS CLASSIFICATION WORKING GROUP: RCWG. Available online: https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg (accessed on 16 November 2020).
- Dóró, R.; Laszlo, B.; Martella, V.; Leshem, E.; Gentsch, J.; Parashar, U.; Bányai, K. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: Is there evidence of strain selection from vaccine pressure? Infect. Genet. Evol. 2014, 28, 446–461. [Google Scholar] [CrossRef]
- Ivashechkin, A.A.; Yuzhakov, A.G.; Grebennikova, T.V.; Yuzhakova, K.A.; Kulikova, N.Y.; Kisteneva, L.B.; Smetanina, S.V.; Bazarova, M.V.; Almazova, M.G. Genetic diversity of group A rotaviruses in Moscow in 2018–2019. Arch. Virol. 2020, 165, 691–702. [Google Scholar] [CrossRef]
- Kiseleva, V.; Faizuloev, E.; Meskina, E.; Marova, A.; Oksanich, A.; Samartseva, T.; Bakhtoyarov, G.; Bochkareva, N.; Filatov, N.; Linok, A.; et al. Molecular-Genetic Characterization of Human Rotavirus A Strains Circulating in Moscow, Russia (2009–2014). Virol. Sin. 2018, 33, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://ria.ru/20160701/1455716174.html (accessed on 16 November 2020). (In Russian).
- Zeller, M.; Rahman, M.; Heylen, E.; De Coster, S.; De Vos, S.; Arijs, I.; Novo, L.; Verstappen, N.; Van Ranst, M.; Matthijnssens, J. Rotavirus incidence and genotype distribution before and after national rotavirus vaccine introduction in Belgium. Vaccine 2010, 28, 7507–7513. [Google Scholar] [CrossRef]
- João, E.D.; Munlela, B.; Chissaque, A.; Chilaúle, J.; Langa, J.; Augusto, O.; Boene, S.S.; Anapakala, E.; Sambo, J.; Guimarães, E.; et al. Molecular Epidemiology of Rotavirus A Strains Pre- and Post-Vaccine (Rotarix®) Introduction in Mozambique, 2012–2019: Emergence of Genotypes G3P[4] and G3P[8]. Pathogens 2020, 9, 671. [Google Scholar] [CrossRef]
- Steyer, A.; Sagadin, M.; Kolenc, M.; Poljšak-Prijatelj, M. Molecular characterization of rotavirus strains from pre- and post-vaccination periods in a country with low vaccination coverage: The case of Slovenia. Infect. Genet. Evol. 2014, 28, 413–425. [Google Scholar] [CrossRef] [Green Version]
- Hasso-Agopsowicz, M.; Ladva, C.N.; Lopman, B.; Sanderson, C.; Cohen, A.L.; Tate, J.E.; Riveros, X.; Henao-Restrepo, A.M.; Clark, A. Global Rotavirus Surveillance Network and Rotavirus Age Study Collaborators. Global Review of the Age Distribution of Rotavirus Disease in Children Aged <5 Years Before the Introduction of Rotavirus Vaccination. Clin. Infect. Dis. 2019, 69, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
- Griffin, D.D.; Fletcher, M.; Levy, M.E.; Ching-Lee, M.; Nogami, R.; Edwards, L.; Peters, H.; Montague, L.; Gentsch, J.R.; Glass, R.I. Outbreaks of adult gastroenteritis traced to a single genotype of rotavirus. J. Infect. Dis. 2002, 185, 1502–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacilli, M.; Cortese, M.M.; Smith, S.; Siston, A.; Samala, U.; Bowen, M.D.; Parada, J.P.; Tam, K.I.; Rungsrisuriyachai, K.; Roy, S.; et al. Outbreak of Gastroenteritis in Adults Due to Rotavirus Genotype G12P[8]. Clin. Infect. Dis. 2015, 61, e20–e25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubilar-Abreu, E.; Hedlund, K.O.; Svensson, L.; Mittelholzer, C. Serotype G9 rotavirus infections in adults in Sweden. J. Clin. Microbiol. 2005, 43, 1374–1376. [Google Scholar] [CrossRef] [Green Version]
- Sashina, T.A.; Morozova, O.V.; Epifanova, N.V.; Novikova, N.A. Predominance of new G9P[8] rotaviruses closely related to Turkish strains in Nizhny Novgorod (Russia). Arch. Virol. 2017, 162, 2387–2392. [Google Scholar] [CrossRef]
- Phan, T.G.; Okitsu, S.; Maneekarn, N.; Ushijima, H. Genetic heterogeneity, evolution and recombination in emerging G9 rotaviruses. Infect. Genet. Evol. 2007, 7, 656–663. [Google Scholar] [CrossRef]
- Matthijnssens, J.; Heylen, E.; Zeller, M.; Rahman, M.; Lemey, P.; Van Ranst, M. Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Mol. Biol. Evol. 2010, 27, 2431–2436. [Google Scholar] [CrossRef] [Green Version]
- Athiyyah, A.F.; Utsumi, T.; Wahyuni, R.M.; Dinana, Z.; Yamani, L.N.; Sudarmo, S.M.; Ranuh, R.G.; Darma, A.; Raharjo, D.; Matsui, C.; et al. Molecular Epidemiology and Clinical Features of Rotavirus Infection Among Pediatric Patients in East Java, Indonesia During 2015–2018: Dynamic Changes in Rotavirus Genotypes From Equine-Like G3 to Typical Human G1/G3. Front. Microbiol. 2019, 10, 940. [Google Scholar] [CrossRef] [Green Version]
- Katz, E.M.; Esona, M.D.; Betrapally, N.S.; De La Cruz De Leon, L.A.; Neira, Y.R.; Rey, G.J.; Bowen, M.D. Whole-gene analysis of inter-genogroup reassortant rotaviruses from the Dominican Republic: Emergence of equine-like G3 strains and evidence of their reassortment with locally-circulating strains. Virology 2019, 534, 114–131. [Google Scholar] [CrossRef] [PubMed]
- Doan, Y.H.; Nakagomi, T.; Cunliffe, N.A.; Pandey, B.D.; Sherchand, J.B.; Nakagomi, O. The occurrence of amino acid substitutions D96N and S242N in VP7 of emergent G2P[4] rotaviruses in Nepal in 2004–2005: A global and evolutionary perspective. Arch. Virol. 2011, 156, 1969–1978. [Google Scholar] [CrossRef]
- Morozova, O.V.; Sashina, T.A.; Epifanova, N.V.; Kashnikov, A.Y.; Novikova, N.A. Increasing detection of rotavirus G2P[4] strains in Nizhny Novgorod, Russia, between 2016 and 2019. Arch. Virol. 2021, 166, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Giammanco, G.M.; Bonura, F.; Zeller, M.; Heylen, E.; Van Ranst, M.; Martella, V.; Bányai, K.; Matthijnssens, J.; De Grazia, S. Evolution of DS-1-like human G2P[4] rotaviruses assessed by complete genome analyses. J. Gen. Virol. 2014, 95, 91–109. [Google Scholar] [CrossRef] [PubMed]
- Morozova, O.V.; Sashina, T.A.; Epifanova, N.V.; Zverev, V.V.; Kashnikov, A.U.; Novikova, N.A. Phylogenetic comparison of the VP7, VP4, VP6, and NSP4 genes of rotaviruses isolated from children in Nizhny Novgorod, Russia, 2015–2016, with cogent genes of the Rotarix and RotaTeq vaccine strains. Virus Genes 2018, 54, 225–235. [Google Scholar] [CrossRef]
- Zhirakovskaia, E.; Tikunov, A.; Tymentsev, A.; Sokolov, S.; Sedelnikova, D.; Tikunova, N. Changing pattern of prevalence and genetic diversity of rotavirus, norovirus, astrovirus, and bocavirus associated with childhood diarrhea in Asian Russia, 2009-2012. Infect. Genet. Evol. 2019, 67, 167–182. [Google Scholar] [CrossRef]
- Nakagomi, T.; Doan, Y.H.; Dove, W.; Ngwira, B.; Iturriza-Gómara, M.; Nakagomi, O.; Cunliffe, N.A. G8 rotaviruses with conserved genotype constellations detected in Malawi over 10 years (1997–2007) display frequent gene reassortment among strains co-circulating in humans. J. Gen. Virol. 2013, 94, 1273–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, M.F.; Gómez, M.M.; Rose, T.L.; Volotão Ede, M.; Carvalho-Costa, F.A.; Bello, G.; Leite, J.P. VP8*P[8] lineages of group A rotaviruses circulating over 20 years in Brazil: Proposal of six different sub-lineages for P[8]-3 clade. Infect. Genet. Evol. 2013, 16, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Morozova, O.V.; Sashina, T.A.; Fomina, S.G.; Novikova, N.A. Comparative characteristics of the VP7 and VP4 antigenic epitopes of the rotaviruses circulating in Russia (Nizhny Novgorod) and the Rotarix and RotaTeq vaccines. Arch. Virol. 2015, 160, 1693–1703. [Google Scholar] [CrossRef] [PubMed]
- Nyaga, M.M.; Tan, Y.; Seheri, M.L.; Halpin, R.A.; Akopov, A.; Stucker, K.M.; Fedorova, N.B.; Shrivastava, S.; Duncan Steele, A.; Mwenda, J.M.; et al. Whole-genome sequencing and analyses identify high genetic heterogeneity, diversity and endemicity of rotavirus genotype P[6] strains circulating in Africa. Infect. Genet. Evol. 2018, 63, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Malasao, R.; Khamrin, P.; Kumthip, K.; Ushijima, H.; Maneekarn, N. Complete genome sequence analysis of rare G4P[6] rotavirus strains from human and pig reveals the evidence for interspecies transmission. Infect. Genet. Evol. 2018, 65, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Chansaenroj, J.; Chuchaona, W.; Lestari, F.B.; Pasittungkul, S.; Klinfueng, S.; Wanlapakorn, N.; Vongpunsawad, S.; Chirathaworn, C.; Poovorawan, Y. High prevalence of DS-1-like rotavirus infection in Thai adults between 2016 and 2019. PLoS ONE 2020, 15, e0235280. [Google Scholar] [CrossRef]
- Ianiro, G.; Recanatini, C.; D’Errico, M.M.; Monini, M. RotaNet-Italy Study Group. Uncommon G9P[4] group A rotavirus strains causing dehydrating diarrhea in young children in Italy. Infect. Genet. Evol. 2018, 64, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Roczo-Farkas, S.; Kirkwood, C.D.; Cowley, D.; Barnes, G.L.; Bishop, R.F.; Bogdanovic-Sakran, N.; Bines, J.E. The impact of rotavirus vaccines on genotype diversity: A comprehensive analysis of 2 decades of Australian surveillance data. J. Infect. Dis. 2018, 218, 546–554. [Google Scholar] [CrossRef]
- Jere, K.C.; Chaguza, C.; Bar-Zeev, N.; Lowe, J.; Peno, C.; Kumwenda, B.; Nakagomi, O.; Tate, J.E.; Parashar, U.D.; Heyderman, R.S.; et al. VACSURV Consortium. Emergence of double- and triple-gene reassortant G1P[8] rotaviruses possessing a DS-1-like backbone after rotavirus vaccine introduction in Malawi. J. Virol. 2018, 92, e01246-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babji, S.; Arumugam, R.; Sarvanabhavan, A.; Gentsch, J.R.; Kang, G. Approach to molecular characterization of partially and completely untyped samples in an Indian rotavirus surveillance program. Vaccine. 2014, 32, A84–A88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
G-Type | [P]-Type | <1 Year | 1–2 Years | 3–5 Years | 6–18 Years | >18 Years | Total |
---|---|---|---|---|---|---|---|
G1 | P[8] | 1 | 3 | 2 | 6 | ||
G2 | P[4] | 9 | 1 | 10 | |||
P[X] | 1 | 1 | 2 | ||||
G3 | P[8] | 1 | 17 | 4 | 22 | ||
G4 | P[8] | 2 | 2 | ||||
P[6] | 1 | 1 | |||||
G8 | P[8] | 2 | 2 | ||||
G9 | P[8] | 5 | 16 | 8 | 1 | 1 | 31 |
P[4] | 1 | 1 | 1 | 3 | |||
G12 | P[8] | 1 | 1 | ||||
Total | 9 | 50 | 15 | 3 | 3 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuzhakov, A.; Yuzhakova, K.; Kulikova, N.; Kisteneva, L.; Cherepushkin, S.; Smetanina, S.; Bazarova, M.; Syroeshkin, A.; Grebennikova, T. Prevalence and Genetic Diversity of Group A Rotavirus Genotypes in Moscow (2019–2020). Pathogens 2021, 10, 674. https://doi.org/10.3390/pathogens10060674
Yuzhakov A, Yuzhakova K, Kulikova N, Kisteneva L, Cherepushkin S, Smetanina S, Bazarova M, Syroeshkin A, Grebennikova T. Prevalence and Genetic Diversity of Group A Rotavirus Genotypes in Moscow (2019–2020). Pathogens. 2021; 10(6):674. https://doi.org/10.3390/pathogens10060674
Chicago/Turabian StyleYuzhakov, Anton, Ksenia Yuzhakova, Nadezhda Kulikova, Lidia Kisteneva, Stanislav Cherepushkin, Svetlana Smetanina, Marina Bazarova, Anton Syroeshkin, and Tatiana Grebennikova. 2021. "Prevalence and Genetic Diversity of Group A Rotavirus Genotypes in Moscow (2019–2020)" Pathogens 10, no. 6: 674. https://doi.org/10.3390/pathogens10060674
APA StyleYuzhakov, A., Yuzhakova, K., Kulikova, N., Kisteneva, L., Cherepushkin, S., Smetanina, S., Bazarova, M., Syroeshkin, A., & Grebennikova, T. (2021). Prevalence and Genetic Diversity of Group A Rotavirus Genotypes in Moscow (2019–2020). Pathogens, 10(6), 674. https://doi.org/10.3390/pathogens10060674