Environmental Stability of SARS-CoV-2 on Different Types of Surfaces under Indoor and Seasonal Climate Conditions
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- World Health Organization. Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions: Scientific Brief. Available online: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions (accessed on 7 August 2020).
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.-L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Kratzel, A.; Steiner, S.; Todt, D.; V’kovski, P.; Brueggemann, Y.; Steinmann, J.; Steinmann, E.; Thiel, V.; Pfaender, S. Temperature-dependent surface stability of SARS-CoV-2. J. Infect. 2020, 81, 474–476. [Google Scholar] [CrossRef] [PubMed]
- Biryukov, J.; Boydston, J.A.; Dunning, R.A.; Yeager, J.J.; Wood, S.; Reese, A.L.; Ferris, A.; Miller, D.; Weaver, W.; Zeitouni, N.E.; et al. Increasing temperature and relative humidity accelerates inactivation of SARS-CoV-2 on surfaces. mSphere 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.T.; Wong, M.S.Y.; Marimuthu, K. Air, surface Environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 2020, 323, 1610–1612. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.L.; Zhang, X.L.; Zhao, X.N.; Li, C.B.; Lei, J.; Kou, Z.Q.; Sun, W.K.; Hang, Y.; Gao, F.; Ji, S.X.; et al. Transmission potential of asymptomatic and paucisymptomatic severe acute respiratory syndrome coronavirus 2 infections: A 3-family cluster study in China. J. Infect. Dis. 2020, 221, 1948–1952. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Sun, W.; Huang, J.; Gamber, M.; Wu, J.; He, G. Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerg. Infect. Dis. 2020, 26, 1343–1345. [Google Scholar] [CrossRef] [PubMed]
- Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, 368, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Matson, M.J.; Yinda, C.K.; Seifert, S.N.; Bushmaker, T.; Fischer, R.J.; van Doremalen, N.; Lloyd-Smith, J.O.; Munster, V.J. Effect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputum. Emerg. Infect. Dis. 2020, 26, 2276–2278. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, B.; Touret, F.; Gilles, M.; de Lamballerie, X.; Charrel, R.N. Prolonged infectivity of SARS-CoV-2 in fomites. Emerg. Infect. Dis. 2020, 26, 2256–2257. [Google Scholar] [CrossRef] [PubMed]
- Ratnesar-Shumate, S.; Williams, G.; Green, B.; Krause, M.; Holland, B.; Wood, S.; Bohannon, J.; Boydston, J.; Freeburger, D.; Hooper, I.; et al. Simulated sunlight rapidly inactivates SARS-CoV-2 on surfaces. J. Infect. Dis. 2020, 222, 214–222. [Google Scholar] [CrossRef] [PubMed]
21 °C/60% RH (Indoor Condition) | 25 °C/70% RH (Summer Condition) | 13 °C/66% RH (Spring/Fall Condition) | 5 °C/75% RH (Winter Condition) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Half-Life (Hours) | 95% CI (Hours) | r2 | Half-Life (Hours) | 95% CI (Hours) | r2 | Half-Life (Hours) | 95% CI (Hours) | r2 | Half-Life (Hours) | 95% CI (Hours) | r2 | |
Nitrile gloves—outer surface | 11.56 | 8.27, 19.21 | 0.69 | 4.42 | 3.5, 6.03 | 0.92 | 22.94 | 18.73, 29.63 | 0.88 | 85.71 | 65.37, 124.5 | 0.7 |
Tyvek | 9.36 | 7.76, 11.79 | 0.89 | 4.57 | 3.84, 5.63 | 0.96 | 31.82 | 24.65, 44.82 | 0.81 | 90.59 | 78.19, 107.66 | 0.9 |
N95 mask | 9.01 | 7.57, 11.12 | 0.91 | 4.4 | 3.64, 5.57 | 0.95 | 27.77 | 22.5, 36.27 | 0.87 | 106.37 | 76.68, 173.6 | 0.61 |
Cloth | 3.5 | 2.77, 4.75 | 0.97 | 2.99 | 2.45, 3.84 | 0.98 | 19.94 | 13.94, 34.95 | 0.81 | 47.94 | 40.04, 59.74 | 0.88 |
Styrofoam | 9.62 | 8.04, 11.98 | 0.9 | 4.75 | 3.73, 6.53 | 0.92 | 24.67 | 20.6, 30.73 | 0.9 | 112.91 | 82.75, 177.7 | 0.63 |
Cardboard | 12.86 | 10.52, 16.54 | 0.88 | 5.03 | 3.5, 8,95 | 0.91 | 26.93 | 23.55, 31.42 | 0.95 | 121.78 | 81.65, 239.67 | 0.49 |
Concrete | 7.96 | 5.25, 16.44 | 0.65 | 2.54 | 1.55, 6.98 | 0.83 | 17.11 | 14.38, 21.14 | 0.91 | 80.99 | 62.53, 114.9 | 0.73 |
Rubber | 11.33 | 8.95, 15.45 | 0.83 | 5.03 | 3.63, 8.18 | 0.84 | 28.27 | 22.4, 38.32 | 0.84 | 115.74 | 84.04, 185.82 | 0.62 |
Glass | 9.6 | 8.05, 11.89 | 0.91 | 5.58 | 4.72, 6.82 | 0.96 | 27.34 | 21.72, 36.87 | 0.84 | 92.03 | 72.82, 125.06 | 0.77 |
Polypropylene | 9.02 | 7.22, 12.03 | 0.89 | 4.51 | 3.74, 5.68 | 0.95 | 28.75 | 21.52, 43.36 | 0.76 | 75.54 | 60.58, 100.31 | 0.79 |
Stainless steel | 7.75 | 6.39, 9.86 | 0.92 | 3.41 | 2.36, 6.16 | 0.91 | 23.46 | 20.16, 28.08 | 0.93 | 70.06 | 59.43, 85.28 | 0.88 |
Galvanized steel | 6.93 | 5.88, 8.43 | 0.94 | 4.19 | 3.68, 4.85 | 0.98 | 24.22 | 21.3, 28.08 | 0.95 | 67.21 | 55.49, 85.23 | 0.84 |
Positive control | 35.54 | 23.19, 75.88 | 0.56 | 29.48 | 20.85, 50.39 | 0.68 | 100.68 | 52.35, 1346.89 | 0.3 | 263.37 | 155.41, 863.29 | 0.32 |
Season | Spring | Summer | Fall | Winter | Spring | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Month Year | May 2019 | June 2019 | July 2019 | August 2019 | September 2019 | October 2019 | November 2019 | December 2019 | January 2020 | February 2020 | March 2020 | April 2020 |
Maximum temperature (°F) | 73.6 | 86.9 | 91.8 | 86.7 | 88.1 | 63.7 | 54.5 | 48.6 | 42.8 | 47.5 | 60.1 | 67.9 |
Minimum temperature (°F) | 52.9 | 61.9 | 68.3 | 68 | 65.9 | 39 | 27.2 | 23 | 22.3 | 21.8 | 37 | 39.8 |
Relative humidity (%) | 73 | 67 | 66 | 76 | 69 | 66 | 60 | 68 | 73 | 61 | 67 | 59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, T.; Gaudreault, N.N.; Richt, J.A. Environmental Stability of SARS-CoV-2 on Different Types of Surfaces under Indoor and Seasonal Climate Conditions. Pathogens 2021, 10, 227. https://doi.org/10.3390/pathogens10020227
Kwon T, Gaudreault NN, Richt JA. Environmental Stability of SARS-CoV-2 on Different Types of Surfaces under Indoor and Seasonal Climate Conditions. Pathogens. 2021; 10(2):227. https://doi.org/10.3390/pathogens10020227
Chicago/Turabian StyleKwon, Taeyong, Natasha N. Gaudreault, and Juergen A. Richt. 2021. "Environmental Stability of SARS-CoV-2 on Different Types of Surfaces under Indoor and Seasonal Climate Conditions" Pathogens 10, no. 2: 227. https://doi.org/10.3390/pathogens10020227
APA StyleKwon, T., Gaudreault, N. N., & Richt, J. A. (2021). Environmental Stability of SARS-CoV-2 on Different Types of Surfaces under Indoor and Seasonal Climate Conditions. Pathogens, 10(2), 227. https://doi.org/10.3390/pathogens10020227