Exploring Neuroscientific Approaches to Architecture: Design Strategies of the Built Environment for Improving Human Performance
Abstract
1. Introduction
2. Materials and Methods
- (Neuroarchitecture) OR (Architecture) OR (Built Environment) OR (Interior design) OR (Design) OR (Environmental design) OR (Sensory design)
- (Neuroscience) OR (Cognitive science) OR (Cognitive emotional design) OR (Brain)
- (Human performance) OR (Behavior) OR (Well-being) OR (Human cognition)
3. Results
3.1. Neuroarchitecture and Neuroscience for Architecture
3.2. Measurement Techniques in Neuroarchitecture Research
- fMRI, which tracks blood oxygenation level-dependent (BOLD) signals to map brain activation in response to pleasant or unpleasant architectural spaces, reflecting neural correlations of emotional and cognitive processes.
- EEG, which records electrical brain activity with high temporal resolution, facilitating analysis of real-time neural dynamics during environmental exposure.
- fNIRS, a non-invasive optical imaging method that detects changes in cortical blood oxygenation, similarly linked to neural activity.
3.3. Emerging Design Criteria and Strategies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Attaianese, E. Human Factors in Design of Sustainable Buildings. In Advances in Ergonomics in Design, Usability & Special Populations—Part III; Rebelo, F., Soares, M., Eds.; AHFE Open Access: New York, NY, USA, 2022; Volume 20. [Google Scholar] [CrossRef]
- Lewin, K. Principles of Topological Psychology; McGraw Hill: New York, NY, USA, 1936. [Google Scholar]
- de Paiva, A. Neuroscience for Architecture: How Building Design Can Influence Behaviors and Performance. J. Civ. Eng. Archit. 2018, 12, 132–138. [Google Scholar] [CrossRef]
- Gharaei, B.; Zadeh, S.M.S.H.; Ghomeishi, M. Developing a Neuroarchitecture Based User Centered Design for Elementary Schools in Tehran. Ain Shams Eng. J. 2024, 15, 102898. [Google Scholar] [CrossRef]
- Lynch, K. The Image of the City; The MIT Press: Cambridge, MA, USA, 1960; ISBN 0-262-62001-4. [Google Scholar]
- Karakas, T.; Yildiz, D. Exploring the Influence of the Built Environment on Human Experience through a Neuroscience Approach: A Systematic Review. Front. Archit. Res. 2020, 9, 236–247. [Google Scholar] [CrossRef]
- Gibson, J.J. The Senses Considered as Perceptual Systems; Houghton Mifflin: Boston, MA, USA, 1966. [Google Scholar]
- Lee, S.; Shin, W.; Park, E.J. Implications of Neuroarchitecture for the Experience of the Built Environment: A Scoping Review. Archnet-IJAR Int. J. Archit. Res. 2022, 16, 225–244. [Google Scholar] [CrossRef]
- Sommer, R. Personal Space: The Behavioral Basis of Design; Prentice Hall: Englewood Cliffs, NJ, USA, 1969. [Google Scholar]
- Hall, E.T. The Hidden Dimension; Doubleday: Garden City, NY, USA, 1969. [Google Scholar]
- Proshansky, H.; Ittelson, W.; Rivlin, L. Environmental Psychology: Man and His Physical Setting; Holt, Rinehart and Winston: New York, NY, USA, 1970. [Google Scholar]
- Bronfenbrenner, U. Toward an Experimental Ecology of Human Development. Am. Psychol. 1977, 32, 513–531. [Google Scholar] [CrossRef]
- Bronfenbrenner, U. The Ecology of Human Development: Experiments by Nature and Design; Harvard University Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Bronfenbrenner, U. Making Human Beings Human: Bioecological Perspectives on Human Development; SAGE Publications: Thousand Oaks, CA, USA, 2004. [Google Scholar]
- Ahmed, D.E.; Kamel, S.; Khodeir, L. Exploring the Contribution of Neuroarchitecture in Learning Environments Design “A Review”. Int. J. Archit. Eng. Urban Res. 2021, 4, 67–94. [Google Scholar] [CrossRef]
- Wilson, E.O. Biophilia; Harvard University Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Ulrich, R.S. Natural Versus Urban Scenes: Some Psychophysiological Effects. Environ. Behav. 1981, 13, 523–556. [Google Scholar] [CrossRef]
- Hussein, M.S.H.A.; Mansour, Y.M.; Kamel, S.M. Revisiting Scientific Theories, Towards Human Well Being Oriented Built Environments. In Urban Resilience, Livability, and Climate Adaptation; HERL 2023, Advances in Science, Technology & Innovation; Pigliautile, I., Piselli, C., Karunathilake, H.P., Fabiani, C., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Kaplan, S. The Restorative Benefits of Nature: Toward an Integrative Framework. J. Environ. Psychol. 1995, 15, 169–182. [Google Scholar] [CrossRef]
- Kaplan, R.; Kaplan, S. The Experience of Nature: A Psychological Perspective; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Kellert, S.R.; Wilson, E.O. The Biophilia Hypothesis; Island Press: Washington, DC, USA, 1993. [Google Scholar]
- Mehrabian, A.; Russell, J.A. An Approach to Environmental Psychology; MIT Press: Cambridge, MA, USA, 1974; ISBN 978-0262130905. [Google Scholar]
- Makanadar, A. Neuro-adaptive Architecture: Buildings and City Design That Respond to Human Emotions, Cognitive States. Res. Glob. 2024, 8, 100222. [Google Scholar] [CrossRef]
- Altman, I.; Wohlwill, J.F. (Eds.) Human Behavior and Environment: Advances in Theory and Research; Plenum Press: New York, NY, USA, 1976; ISBN 0306333015. [Google Scholar]
- Barker, R.G. Behavior Settings: A Revisionist Theory of Environmental Events; Aldine Transaction: Chicago, IL, USA, 1978. [Google Scholar]
- Zamani, M.; Kheirollahi, M.; Asghari Ebrahim Abad, M.J.; Rezaee, H.; Vafaee, F. A Review of the Effects of the Physical Components of the Interior Space of Architecture on Emotions with an Emphasis on Neuroarchitecture. Bagh-e Nazar 2023, 20, 85–112. [Google Scholar]
- Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Lang, J. Creating Architectural Theory: The Role of the Behavioral Sciences in Environmental Design; Van Nostrand Reinhold Co.: New York, NY, USA, 1987. [Google Scholar]
- Rybczynski, W. The Look of Architecture; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Spence, C. Senses of Place: Architectural Design for the Multisensory Mind. Cogn. Res. Princ. Implic. 2020, 5, 46. [Google Scholar] [CrossRef]
- LeDoux, J.E. Cognitive-Emotional Interactions in the Brain; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Hauptmann, D.; Neidich, W. Cognitive Architecture: From Biopolitics to Noopolitics—Architecture & Mind in the Age of Communication and Information; 010 Publishers: Rotterdam, The Netherlands, 2010. [Google Scholar]
- Sussman, A.; Hollander, J.B. Cognitive Architecture: Designing for How We Respond to the Built Environment; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Sternberg, E.M. Healing Spaces: The Science of Place and Well-Being; Belknap Press of Harvard University Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Dunn, J.R. Levels of Influence in the Built Environment on the Promotion of Healthy Child Development. Healthc. Q. 2012, 15, 32–37. [Google Scholar] [CrossRef]
- Pallasmaa, J. Space, Place and Atmosphere: Emotion and Peripheral Perception in Architectural Experience. Lebenswelt 2014, 4, 230–245. [Google Scholar] [CrossRef]
- Tawil, N.; Kühn, S. The Built Environment and the Brain: Review of Emerging Methods to Investigate the Impact of Viewing Architectural Design. In Environmental Neuroscience; Kühn, S., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 169–226. [Google Scholar] [CrossRef]
- Wandscheer, M.; Wandscheer, A.L.C.; Hahn, I.S. Enhancing Patient Recovery and Well-Being: A Neuroarchitectural Analysis of a Brazilian Philanthropic Hospital. IOSR J. Humanit. Soc. Sci. 2024, 29, 56–61. Available online: https://www.iosrjournals.org/iosr-jhss/papers/Vol.29-Issue6/Ser-11/J2906115661.pdf (accessed on 28 January 2025).
- Assem, A.; Safwat, M. Computational Design Approach for Applying Neuro-Architecture Principles in Healthcare Facilities. Archit. Plan. J. 2023, 28, 28. [Google Scholar] [CrossRef]
- Xochitemo-Pérez, A.; Pujol-Martínez, I. Neuroarchitecture: Beyond a Spatial Sensation. J. Archit. Des. 2021, 5, 11–18. [Google Scholar]
- Wang, S.; Sanches de Oliveira, G.; Djebbara, Z.; Gramann, K. The Embodiment of Architectural Experience: A Methodological Perspective on Neuro Architecture. Front. Hum. Neurosci. 2022, 16, 833528. [Google Scholar] [CrossRef]
- Assem, H.M.; Mohamed Khodeir, L.; Fathy, F. Designing for Human Well Being: The Integration of Neuroarchitecture in Design—A Systematic Review. Ain Shams Eng. J. 2023, 14, 102102. [Google Scholar] [CrossRef]
- Higuera Trujillo, J.L.; Llinares, C.; Macagno, E. The Cognitive Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches. Sensors 2021, 21, 2193. [Google Scholar] [CrossRef]
- Quesada-García, S.; Valero-Flores, P.; Lozano-Gómez, M. Towards a Healthy Architecture: A New Paradigm in the Design and Construction of Buildings. Buildings 2023, 13, 2001. [Google Scholar] [CrossRef]
- George, J.; Prakash, V.P. Exploring the Influence of Neuroarchitecture on Human Behavior and Well Being. Int. J. Sci. Res. Eng. Manag. 2024, 8, 1–9. [Google Scholar] [CrossRef]
- Abbas, S.; Okdeh, N.; Roufayel, R.; Kovacic, H.; Sabatier, J.-M.; Fajloun, Z.; Abi Khattar, Z. Neuroarchitecture: How the Perception of Our Surroundings Impacts the Brain. Biology 2024, 13, 220. [Google Scholar] [CrossRef]
- Khalil, M.H. Environmental Affordance for Physical Activity, Neurosustainability, and Brain Health: Quantifying the Built Environment’s Ability to Sustain BDNF Release by Reaching Metabolic Equivalents (METs). Brain Sci. 2024, 14, 1133. [Google Scholar] [CrossRef]
- Lawson, B.R. Cognitive Strategies in Architectural Design. Ergonomics 1979, 22, 59–68. [Google Scholar] [CrossRef]
- Castilla-Cabanes, N.; Higuera-Trujillo, J.L.; Llinares, C. The effects of illuminance on students’ memory: A neuroarchitecture study. Build. Environ. 2023, 228, 109833. [Google Scholar] [CrossRef]
- Azzazy, S.; Ghaffarianhoseini, A.; GhaffarianHoseini, A.; Naismith, N.; Doborjeh, Z. A Critical Review on the Impact of Built Environment on Users’ Measured Brain Activity. Archit. Sci. Rev. 2021, 64, 319–335. [Google Scholar] [CrossRef]
- Sternberg, E.M.; Wilson, M.A. Neuroscience and Architecture: Seeking Common Ground. Cell 2006, 127, 239–242. [Google Scholar] [CrossRef]
- Dougherty, B.O.; Arbib, M.A. The Evolution of Neuroscience for Architecture: Introducing the Special Issue. Intell. Build. Int. 2013, 5, 4–9. [Google Scholar] [CrossRef]
- Vartanian, O.; Navarrete, G.; Chatterjee, A.; Fich, L.B.; Leder, H.; Modroño, C.; Nadal, M.; Rostrup, N.; Skov, M. Impact of Contour on Aesthetic Judgments and Approach–Avoidance Decisions in Architecture. Proc. Natl. Acad. Sci. USA 2013, 110 (Suppl. S2), 10446–10453. [Google Scholar] [CrossRef] [PubMed]
- Bower, I.S.; Clark, G.M.; Tucker, R.; Hill, A.T.; Lum, J.A.G.; Mortimer, M.A.; Enticott, P.G. Enlarged Interior Built Environment Scale Modulates High-Frequency EEG Oscillations. eNeuro 2022, 9, ENEURO.0104-22.2022. [Google Scholar] [CrossRef]
- Mallgrave, F.H. The Architect’s Brain: Neuroscience, Creativity, and Architecture; Wiley Blackwell: Hoboken, NJ, USA, 2009. [Google Scholar]
- Edelstein, E. The Routledge Companion for Architecture Design and Practice; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Tenenbaum, G.; Hatfield, B.D.; Eklund, R.C.; Land, W.M.; Calmeiro, L.; Razon, S.; Schack, T. A conceptual framework for studying emotions-cognitions-performance linkage under conditions that vary in perceived pressure. Prog Brain Res. 2009, 174, 159–178. [Google Scholar] [CrossRef]
- Shi, Y.; Qu, S. Cognition and Academic Performance: Mediating Role of Personality Characteristics and Psychology Health. Front. Psychol. 2021, 12, 774548. [Google Scholar] [CrossRef]
- Forgas, J.P. Mood effects on cognition: Affective influences on the content and process of information processing and behavior. In Emotions and Affect in Human Factors and Human–Computer Interaction; Forgas, J.P., Vincze, O., László, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 89–122. [Google Scholar] [CrossRef]
- Ekman, P.; Levenson, R.W.; Friesen, W.V. Autonomic nervous system activity distinguishes among emotions. Science 1983, 221, 1208–1210. [Google Scholar] [CrossRef]
- Llorens-Gámez, M.; Higuera Trujillo, J.L.; Sentieri Omarrementeria, C.; Llinares, C. The Impact of the Design of Learning Spaces on Attention and Memory from a Neuroarchitectural Approach: A Systematic Review. Front. Archit. Res. 2022, 11, 542–560. [Google Scholar] [CrossRef]
- Xiong, L.; Huang, X.; Li, J.; Mao, P.; Wang, X.; Wang, R.; Tang, M. Impact of Indoor Physical Environment on Learning Efficiency in Different Types of Tasks: A 3×4×3 Full Factorial Design Analysis. Int. J. Environ. Res. Public Health 2018, 15, 1256. [Google Scholar] [CrossRef]
- Mostafavi, A.; Cruz Garza, J.G.; Kalantari, S. Enhancing Lighting Design through the Investigation of Illuminance and Correlated Color Temperature’s Effects on Brain Activity: An EEG VR Approach. J. Build. Eng. 2023, 75, 106776. [Google Scholar] [CrossRef]
- Min, Y.H.; Lee, S. Does Interior Color Contrast Enhance Spatial Memory? Color Res. Appl. 2020, 45, 352–361. [Google Scholar] [CrossRef]
- Duyan, F.; Ünver, R. A Research on the Effect of Classroom Wall Colours on Student’s Attention. A/Z ITU J. Fac. Archit. 2016, 13, 73–82. [Google Scholar] [CrossRef]
- Llinares, C.; Higuera Trujillo, J.L.; Serra, J. Cold and Warm Coloured Classrooms: Effects on Students’ Attention and Memory Measured through Psychological and Neurophysiological Responses. Build. Environ. 2021, 196, 107726. [Google Scholar] [CrossRef]
- Elbaiuomy, E.; Hegazy, I.; Sheta, S. The Impact of Architectural Spaces’ Geometric Forms and Construction Materials on the Users’ Brainwaves and Consciousness Status. Int. J. Low Carbon Technol. 2018, 14, 326–334. [Google Scholar] [CrossRef]
- Coburn, A.; Vartanian, O.; Chatterjee, A. Buildings, Beauty, and the Brain: A Neuroscience of Architectural Experience. J. Cogn. Neurosci. 2017, 29, 1521–1531. [Google Scholar] [CrossRef]
- Banaei, M.; Hatami, J.; Yazdanfar, A.; Gramann, K. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics. Front. Hum. Neurosci. 2017, 11, 477. [Google Scholar] [CrossRef] [PubMed]
- Aalto, P.; Steinert, M. Emergence of Eye-Tracking in Architectural Research: A Review of Studies 1976–2021. Archit. Sci. Rev. 2024, 68, 213–223. [Google Scholar] [CrossRef]
- Chatterjee, A.; Coburn, A.; Weinberger, A. The Neuroaesthetics of Architectural Spaces. Cogn. Process. 2021, 22 (Suppl. 1), 115–120. [Google Scholar] [CrossRef] [PubMed]
- Ghamari, H.; Golshany, N.; Naghibi Rad, P.; Behzadi, F. Neuroarchitecture Assessment: An Overview and Bibliometric Analysis. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 1362–1387. [Google Scholar] [CrossRef] [PubMed]


| Cognitive Performance | Design Criteria | References |
|---|---|---|
| Attention |
| [8,15,40,42,45,61] |
| Memory |
| [8,15,61] |
| Orientation |
| [6,8,30,39,42,43] |
| Esthetic judgments (Linked to perception/cognition) |
| [6,8,30,40,43] |
| Concentration |
| [40] |
| Creativity |
| [43,45] |
| Emotive/Mood-Related Performance | Design Criteria | References |
|---|---|---|
| Anxiety-stress reduction |
| [6,8,37,39,40,43,45] |
| Peaceful and emotional connection |
| [6,8,42,45] |
| Positive emotions |
| [6,8,43,45] |
| Approach-avoidance response |
| [30] |
| Esthetic pleasure |
| [6] |
| Mood regulation |
| [43] |
| Physiological Performance | Design Criteria | References |
|---|---|---|
| Recovery and Well-being |
| [6,43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attaianese, E.; Barilà, M.; Perillo, M. Exploring Neuroscientific Approaches to Architecture: Design Strategies of the Built Environment for Improving Human Performance. Buildings 2025, 15, 3524. https://doi.org/10.3390/buildings15193524
Attaianese E, Barilà M, Perillo M. Exploring Neuroscientific Approaches to Architecture: Design Strategies of the Built Environment for Improving Human Performance. Buildings. 2025; 15(19):3524. https://doi.org/10.3390/buildings15193524
Chicago/Turabian StyleAttaianese, Erminia, Morena Barilà, and Mariangela Perillo. 2025. "Exploring Neuroscientific Approaches to Architecture: Design Strategies of the Built Environment for Improving Human Performance" Buildings 15, no. 19: 3524. https://doi.org/10.3390/buildings15193524
APA StyleAttaianese, E., Barilà, M., & Perillo, M. (2025). Exploring Neuroscientific Approaches to Architecture: Design Strategies of the Built Environment for Improving Human Performance. Buildings, 15(19), 3524. https://doi.org/10.3390/buildings15193524

