Service Performance Evaluation Model of Marine Concrete Based on Physical Information Neural Network
Abstract
1. Introduction
2. The Diffusion Model Based on Non-PINN
2.1. Model Theory
2.2. Chloride Ion Diffusion Equation
2.3. Dimensionless Equation
2.4. Service Performance Degradation Model
2.5. PINN Model Parameter Selection
2.6. Service Performance Parameters
3. Model Discussion
3.1. Diffusion Behavior Evaluation
3.2. Results Validated with Numerical Data
3.3. The Effect of Non-Dimensionalization
3.4. Chloride Diffusion Coefficient
3.5. Two-Dimensional Diffusion
3.6. Service Performance Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Gong, F.; Maekawa, K. Multi-scale and multi-chemo-physics lifecycle evaluation of structural concrete under environmental and mechanical impacts. J. Intell. Constr. 2023, 1, 9180003. [Google Scholar] [CrossRef]
- Li, P.; Wang, H.; Nie, D.; Wang, D.; Wang, C. A method to analyze the long-term durability performance of underground reinforced concrete culvert structures under coupled mechanical and environmental loads. J. Intell. Constr. 2023, 1, 9180011. [Google Scholar] [CrossRef]
- Zhu, X.; Abe, H.; Hayashi, D.; Tanaka, H. Behavioral characteristics of RC beams with non-uniform corrosion along the reinforcement. J. Intell. Constr. 2023, 1, 9180019. [Google Scholar] [CrossRef]
- Chen, Y.; Tong, J.; Li, Q.; Xu, S.; Shen, L. Application of high-performance cementitious composites in steel–concrete composite bridge deck systems: A review. J. Intell. Constr. 2024, 2, 9180012. [Google Scholar] [CrossRef]
- Mia, M.S.; Medepalli, S.; Takahashi, Y.; Tsuchiya, K.; Ishida, T. Effect of microstructure differences on the thermal and mechanical behaviors of porous cementitious composites using phase change materials. J. Intell. Constr. 2025, 3, 9180076. [Google Scholar] [CrossRef]
- Wang, S.; Wu, R.; Gong, F.; Xia, J.; Zhao, Y.; Zeng, B. Service life evaluation of marine concrete structures considering spatial and temporal characteristics: A framework based on multi training-MCS-NLS. Eng. Struct. 2025, 322, 119193. [Google Scholar] [CrossRef]
- Jiang, H.; Tian, D.; Dong, M.; Lv, M.; Yang, X.; Lu, S. Effects of interlayer-modified layered double hydroxides with organic corrosion inhibiting ions on the properties of cement-based materials and reinforcement corrosion in chloride environment. Cem. Concr. Compos. 2024, 154, 105793. [Google Scholar] [CrossRef]
- Chi, L.; Wang, M.; Liu, K.; Lu, S.; Kan, L.; Xia, X.; Huang, C. Machine learning prediction of compressive strength of concrete with resistivity modification. Mater. Today Commun. 2023, 36, 106470. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, F. A damage constitutive model for intermittent jointed rocks under cyclic uniaxial compression. Int. J. Rock Mech. Min. Sci. 2018, 103, 289–301. [Google Scholar] [CrossRef]
- Homan, L.; Ababneh, A.N.; Xi, Y. The effect of moisture transport on chloride penetration in concrete. Constr. Build. Mater. 2016, 125, 1189–1195. [Google Scholar] [CrossRef]
- Song, Z.; Jiang, L.; Liu, J.; Liu, J. Influence of cation type on diffusion behavior of chloride ions in concrete. Constr. Build. Mater. 2015, 99, 150–158. [Google Scholar] [CrossRef]
- Zhang, Y.; Luzio, G.D.; Alnaggar, M. Coupled multi-physics simulation of chloride diffusion in saturated and unsaturated concrete. Constr. Build. Mater. 2021, 292, 123394. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Lei, Y.; Gao, N.; Lv, Y.; Niu, D. Effect of non-uniform freeze-thaw damage on the stress-strain curves of concrete under repeated loading. Constr. Build. Mater. 2025, 472, 140892. [Google Scholar] [CrossRef]
- Huang, B.-T.; Zhu, J.-X.; Weng, K.-F.; Li, V.C.; Dai, J.-G. Ultra-high-strength engineered/strain-hardening cementitious composites (ECC/SHCC): Material design and effect of fiber hybridization. Cem. Concr. Compos. 2022, 129, 104464. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Gong, F.; Peng, Y.; Wang, Z.; Zhao, Y.; Zeng, B. Insights on the multiple ions distribution in concrete under stray current: From experiments to multi-field simulation. J. Build. Eng. 2024, 98, 111502. [Google Scholar] [CrossRef]
- Yu, H.; Da, B.; Ma, H.; Dou, X.; Wu, Z. Service life prediction of coral aggregate concrete structure under island reef environment. Constr. Build. Mater. 2020, 246, 118390. [Google Scholar] [CrossRef]
- Xia, J.; Wu, R.-J.; Zhou, Y.; Wang, X.; Chen, J.; Min, W.-L.; Chen, K.-Y.; Jin, W.-L. Systematic framework for handling uncertainty in probabilistic failure analysis of corroded concretes. Eng. Fail. Anal. 2024, 156, 107859. [Google Scholar] [CrossRef]
- Wang, S.; Xia, P.; Gong, F.; Zhao, Y.; Lin, P. A Bayesian-physical informed conditional tabular generative adversarial network framework for low-carbon concrete data augmentation and hyperparameter optimization. Eng. Appl. Artif. Intell. 2025, 152, 110811. [Google Scholar] [CrossRef]
- Wang, S.; Xia, P.; Chen, K.; Gong, F.; Wang, H.; Wang, Q.; Zhao, Y.; Jin, W. Prediction and optimization model of sustainable concrete properties using machine learning, deep learning and swarm intelligence: A review. J. Build. Eng. 2023, 80, 108065. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, B.; Zheng, Z.; Liu, X.; Chen, Z.; Cao, J.; Zhang, T.; Xie, X.; Gao, B.; Xiang, P. Strain distribution prediction in UHPC beams using deep learning model. Struct. Concr. 2025, 26, 643–657. [Google Scholar] [CrossRef]
- Hoang, N.-D.; Chen, C.-T.; Liao, K.-W. Prediction of chloride diffusion in cement mortar using Multi-Gene Genetic Programming and Multivariate Adaptive Regression Splines. Measurement 2017, 112, 141–149. [Google Scholar] [CrossRef]
- Guo, H.; Dong, Y. Dynamic Bayesian network for durability of reinforced concrete structures in long-term environmental exposures. Eng. Fail. Anal. 2022, 142, 106821. [Google Scholar] [CrossRef]
- Moussallem, I.; Jörissen, J.; Kunz, U.; Pinnow, S.; Turek, T. Chlor-alkali electrolysis with oxygen depolarized cathodes: History, present status and future prospects. J. Appl. Electrochem. 2008, 38, 1177–1194. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Tong, J.-Z.; Li, Q.-H.; Xu, S.-L.; Gao, W.; Liu, X. Flexural behavior of novel profiled steel-UHTCC assembled composite bridge decks. J. Constr. Steel Res. 2024, 212, 108258. [Google Scholar] [CrossRef]
- Yu, C.-Q.; Tong, G.-S.; Tong, J.-Z.; Zhang, J.-W.; Li, X.-G.; Xu, S.-L. Experimental and numerical study on seismic performance of L-shaped multi-cellular CFST frames. J. Constr. Steel Res. 2024, 213, 108360. [Google Scholar] [CrossRef]
- Karumuri, S.; Tripathy, R.; Bilionis, I.; Panchal, J. Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks. J. Comput. Phys. 2020, 404, 109120. [Google Scholar] [CrossRef]
- Wan, Y.; Zheng, W.; Wang, Y. Identification of chloride diffusion coefficient in concrete using physics-informed neural networks. Constr. Build. Mater. 2023, 393, 132049. [Google Scholar] [CrossRef]
- Nilsson, L.-O. Models for Chloride Ingress—An Overview. In Benchmarking Chloride Ingress Models on Real-Life Case Studies—Marine Submerged and Road Sprayed Concrete Structures: State-of-the-Art Report of the RILEM TC 270-CIM; Koenders, E., Imamoto, K.-i., Soive, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 7–23. [Google Scholar]
- Martín-Pérez, B.; Pantazopoulou, S.J.; Thomas, M.D.A. Numerical solution of mass transport equations in concrete structures. Comput. Struct. 2001, 79, 1251–1264. [Google Scholar] [CrossRef]
- Pfeiffer, O.P.; Gong, K.; Severson, K.A.; Chen, J.; Gregory, J.R.; Ghosh, S.; Goodwin, R.T.; Olivetti, E.A. Bayesian design of concrete with amortized Gaussian processes and multi-objective optimization. Cem. Concr. Res. 2024, 177, 107406. [Google Scholar] [CrossRef]
- Xue, H.; Jin, Z.; Wang, X. Chloride ion penetration into concrete exposed to marine environment for a long period. Ocean Eng. 2015, 33, 60–65. [Google Scholar] [CrossRef]
Model Parameter | Value |
---|---|
Learning rate | 0.0001 |
Input variables | x,y,t |
Number of hidden layers | 4 |
Number of neurons | 20 |
Optimizer | Adam + L-BFGS |
The initial weight of PDE | 1.0 |
The initial weight of boundary conditions | 1.0 |
The initial weight of the initial condition | 1.0 |
Parameters | Mean | Variance | Distribution | Value |
---|---|---|---|---|
xk | 7 | 1.4 | Normal | N~(7, 1.4) |
R | 0.38 | 0.07 | Normal | N~(0.38, 0.07) |
K | 1.81 | 0.36 | Normal | N~(1.81, 0.36) |
Exposure Time | Cs | D |
---|---|---|
30 | 0.375 | 1.254 |
120 | 0.408 | 1.497 |
180 | 0.478 | 1.514 |
720 | 0.668 | 1.551 |
Time Step | Activation Function | LOSS | Computation Time | ||
---|---|---|---|---|---|
Non-PINN | PINN | Non-PINN | PINN | ||
10 | Tanh | 1.32 × 10−7 | 1.43 × 10−7 | 35 s | 42 s |
100 | Tanh | 0.73 × 10−8 | 0.92 × 10−8 | 6 min 47 s | 9 min 32 s |
1000 | Tanh | 0.11 × 10−8 | 0.31 × 10−8 | 39 min 56 s | 87 min 41 s |
10 | ReLU | 1.93 × 10−7 | 2.15 × 10−7 | 34 s | 44 s |
100 | ReLU | 0.97 × 10−8 | 1.45 × 10−7 | 6 min 44 s | 9 min 33 s |
1000 | ReLU | 0.46 × 10−8 | 0.94 × 10−8 | 39 min 52 s | 87 min 38 s |
10 | Sigmoid | 1.54 × 10−7 | 1.72 × 10−7 | 37 s | 49 s |
100 | Sigmoid | 0.85 × 10−8 | 1.13 × 10−7 | 6 min 53 s | 9 min 37 s |
1000 | Sigmoid | 0.23 × 10−8 | 0.85 × 10−8 | 39 min 54 s | 87 min 49 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Cheng, H.; Kong, P.; Zhang, B.; Gong, F. Service Performance Evaluation Model of Marine Concrete Based on Physical Information Neural Network. Buildings 2025, 15, 3209. https://doi.org/10.3390/buildings15173209
Wang S, Cheng H, Kong P, Zhang B, Gong F. Service Performance Evaluation Model of Marine Concrete Based on Physical Information Neural Network. Buildings. 2025; 15(17):3209. https://doi.org/10.3390/buildings15173209
Chicago/Turabian StyleWang, Shiqi, Haidong Cheng, Peihan Kong, Bo Zhang, and Fuyuan Gong. 2025. "Service Performance Evaluation Model of Marine Concrete Based on Physical Information Neural Network" Buildings 15, no. 17: 3209. https://doi.org/10.3390/buildings15173209
APA StyleWang, S., Cheng, H., Kong, P., Zhang, B., & Gong, F. (2025). Service Performance Evaluation Model of Marine Concrete Based on Physical Information Neural Network. Buildings, 15(17), 3209. https://doi.org/10.3390/buildings15173209