Risk-Informed Dual-Threshold Screening for SPT-Based Liquefaction: A Probability-Calibrated Random Forest Approach
Abstract
1. Introduction
2. Literature Review
3. Methodology
3.1. Field Case Database and Screening
3.2. Pre-Processing and Quality-Weighted Sample Scheme
3.3. Random Forest Development
3.4. Probability Calibration
3.5. ALE and PDP Computation
3.6. Contour-Based Threshold Extraction and Bootstrap Confidence Intervals
3.7. Dual-Threshold Rule and Validation Procedure
4. Results
4.1. Model Discrimination and Calibration
4.2. Feature Importance
4.3. ALE and PDP Behavior
4.4. Derived Thresholds
4.5. Performance of the Simple Dual Rule
5. Discussion
5.1. Comparison with Reliability-Based SPT Curves of Cetin et al. (2018)
5.2. Influence of Quality Weighting
5.3. Interpretation of Model Behavior and Key Insights
5.4. Practical Implications for Engineering Practice
5.5. Limitations and Future Work
6. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polito, C.P.; Martin, J.R. Plasticity, Flow Liquefaction, and Cyclic Mobility in Liquefiable Soils with Low to Moderate Plasticity. CivilEng 2025, 6, 31. [Google Scholar] [CrossRef]
- Wang, W.; Liu-Zeng, J.; Shao, Y.; Wang, Z.; Han, L.; Shen, X.; Qin, K.; Gao, Y.; Yao, W.; Hu, G.; et al. Mapping of soil liquefaction associated with the 2021 Mw 7.4 Maduo (Madoi) Earthquake based on the UAV photogrammetry technology. Remote Sens. 2023, 15, 1032. [Google Scholar] [CrossRef]
- Mele, L.; Lirer, S.; Flora, A. Induced partial saturation: From mechanical principles to engineering design of an innovative and eco-friendly countermeasure against earthquake-induced soil liquefaction. Geosciences 2024, 14, 140. [Google Scholar] [CrossRef]
- Huang, F.K.; Wang, G.S. A Method for Developing Seismic Hazard-Consistent Fragility Curves for Soil Liquefaction Using Monte Carlo Simulation. Appl. Appl. Sci. 2024, 14, 9482. [Google Scholar] [CrossRef]
- Taftsoglou, M.; Valkaniotis, S.; Papathanassiou, G.; Karantanellis, E. Satellite imagery for rapid detection of liquefaction surface manifestations: The case study of Türkiye–Syria 2023 earthquakes. Remote Sens. 2023, 15, 4190. [Google Scholar] [CrossRef]
- Perez, J.S.; Llamas, D.C.E.; Buhay, D.J.L.; Constantino, R.C.C.; Legaspi, C.J.M.; Lagunsad, K.D.B.; Grutas, R.N.; Quimson, M.M.Y. Impacts of a Moderate-Sized Earthquake: The 2023 Magnitude (Mw) 4.7 Leyte, Leyte Earthquake, Philippines. Geosciences 2024, 14, 61. [Google Scholar] [CrossRef]
- Ko, K.W.; Kayen, R.E.; Kokusho, T.; Ilgac, M.; Nozu, A.; Nweke, C.C. Energy-Based Liquefaction Evaluation: The Port of Kushiro in Hokkaido, Japan, 2003 Tokachi-Oki Earthquake. J. Geotech. Geoenviron. Eng. 2024, 150, 05024010. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, Y. A New Shear Wave Velocity-Based Liquefaction Probability Model Using Logistic Regression: Emphasizing Fines Content Optimization. Appl. Sci. 2024, 14, 6793. [Google Scholar] [CrossRef]
- Alonso-Pandavenes, O.; Torrijo, F.J.; Torres, G. Analysis of the Liquefaction Potential at the Base of the San Marcos Dam (Cayambe, Ecuador)—A Validation in the Use of the Horizontal-to-Vertical Spectral Ratio. Geosciences 2024, 14, 306. [Google Scholar] [CrossRef]
- Seed, H.B.; Idriss, I.M. Simplified procedure for evaluating soil liquefaction potential. J. Soil Mech. Found. Div. 1971, 97, 1249–1273. [Google Scholar] [CrossRef]
- Seed, H.B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes. J. Geotech. Eng. Div. 1979, 105, 201–255. [Google Scholar] [CrossRef]
- Idriss, I.M.; Boulanger, R.W. Soil Liquefaction During Earthquakes; Earthquake Engineering Research Institute: Oakland, CA, USA, 2008. [Google Scholar]
- Cetin, K.O.; Seed, R.B.; Der Kiureghian, A.; Tokimatsu, K.; Harder, L.F., Jr.; Kayen, R.E.; Moss, R.E.S. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J. Geotech. Geoenviron. Eng. 2004, 130, 1314–1340. [Google Scholar] [CrossRef]
- Moss, R.E.; Seed, R.B.; Kayen, R.E.; Stewart, J.P.; Der Kiureghian, A.; Cetin, K.O. CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. J. Geotech. Geoenviron. Eng. 2006, 132, 1032–1051. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hossain, M.B.; Sayed, A. Prediction of Soil Liquefaction Using Machine Learning Approaches. Eng. Trans. 2025, 73, 257–277. [Google Scholar]
- Liu, C.Y.; Ku, C.Y.; Chiu, Y.J.; Wu, T.Y. Evaluation of liquefaction potential in central Taiwan using random forest method. Sci Rep. 2024, 14, 27517. [Google Scholar] [CrossRef] [PubMed]
- Ghani, S.; Thapa, I.; Kumari, S.; Correia, A.G.; Asteris, P.G. Revealing the nature of soil liquefaction using machine learning. Earth Sci. Inform. 2025, 18, 198. [Google Scholar] [CrossRef]
- Maurer, B.W.; Sanger, M.D. Why “AI” models for predicting soil liquefaction have been ignored, plus some that shouldn’t be. Earthq. Spectra 2023, 39, 1883–1910. [Google Scholar] [CrossRef]
- Bolton Seed, H.; Tokimatsu, K.; Harder, L.F.; Chung, R.M. Influence of SPT procedures in soil liquefaction resistance evaluations. J. Geotech. Eng. 1985, 111, 1425–1445. [Google Scholar] [CrossRef]
- Katona, T.J.; Karsa, Z. Probabilistic safety analysis of the liquefaction hazard for a nuclear power plant. Geosciences 2022, 12, 192. [Google Scholar] [CrossRef]
- Liao, S.S.C.; Veneziano, D.; Whitman, R.V. Regression models for evaluating liquefaction probability. J. Geotech. Eng. 1988, 114, 389–411. [Google Scholar] [CrossRef]
- Youd, T.L.; Noble, S.K. Liquefaction criteria based on statistical and probabilistic analyses. In Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Salt Lake City, UT, USA, 5–6 January 1996; State University of New York: Buffalo, NY, USA, 1997; pp. 201–205. [Google Scholar]
- Cox, B.R.; Griffiths, S.C. Practical Recommendations for Evaluation and Mitigation of Soil Liquefaction in Arkansas; University of Arkansas: Fayetteville, AR, USA, 2010. [Google Scholar]
- Kayen, R.; Moss, R.E.S.; Thompson, E.M.; Seed, R.B.; Cetin, K.O.; Kiureghian, A.; Tanaka, Y.; Tokimatsu, K. Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil liquefaction potential. J. Geotech. Geoenviron. Eng. 2013, 139, 407–419. [Google Scholar] [CrossRef]
- Boulanger, R.W.; Idriss, I.M. CPT and SPT Based Liquefaction Triggering Procedures; Rep. No. UCD/CGM-14/01; University of California: Davis, CA, USA, 2014. [Google Scholar]
- Choi, Y.; Kumar, K. A machine learning approach to predicting pore pressure response in liquefiable sands under cyclic loading. In Proceedings of the Geo-Congress, Los Angeles, CA, USA, 26–29 March 2023; pp. 202–210. [Google Scholar]
- Şehmusoğlu, E.H.; Kurnaz, T.F.; Erden, C. Estimation of soil liquefaction using artificial intelligence techniques: An extended comparison between machine and deep learning approaches. Environ. Earth Sci. 2025, 84, 1–22. [Google Scholar] [CrossRef]
- Harle, S.M.; Wankhade, R.L. Machine learning techniques for predictive modelling in geotechnical engineering: A succinct review. Discov. Civ. Eng. 2025, 2, 1–21. [Google Scholar] [CrossRef]
- Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2020. Available online: https://christophm.github.io/interpretable-ml-book/ (accessed on 25 August 2025).
- Hsiao, C.H.; Kumar, K.; Rathje, E.M. Explainable AI models for predicting liquefaction-induced lateral spreading. Front. Built Environ. 2024, 10, 1387953. [Google Scholar] [CrossRef]
- Ranjan Kumar, D.; Wipulanusat, W. Advancements in predicting soil liquefaction susceptibility: A comprehensive analysis of ensemble and deep learning approaches. Sci. Rep. 2025, 15, 26453. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Kamchoom, V.; Gnananandarao, T.; Arunachalam, K.P. Developing data driven framework to model earthquake induced liquefaction potential of granular terrain by machine learning classification models. Sci. Rep. 2025, 15, 21509. [Google Scholar] [CrossRef]
- Alharbi, H.S. Efficient Swell Risk Prediction for Building Design Using a Domain-Guided Machine Learning Model. Buildings 2025, 15, 2530. [Google Scholar] [CrossRef]
- Sioutas, K.N.; Benardos, A. Boosting Model Interpretability for Transparent ML in TBM Tunneling. Appl. Sci. 2024, 14, 11394. [Google Scholar] [CrossRef]
- Jahangiri, V.; Akbarzadeh, M.R.; Shahamat, S.A.; Asgari, A.; Naeim, B.; Ranjbar, F. Machine learning-based prediction of seismic response of steel diagrid systems. In Structures; Elsevier: Amsterdam, The Netherlands, 2025; p. 109791. [Google Scholar]
- Ilgac, M.; Cetin, K.O.; Kayen, R.E. Updated SPT-based seismic soil liquefaction triggering global database. In Proceedings of the Geo-Congress, Charlotte, NC, USA, 20–23 March 2022; pp. 308–317. [Google Scholar]
- Cetin, K.O.; Seed, R.B.; Kayen, R.E.; Moss, R.E.; Bilge, H.T.; Ilgac, M.; Chowdhury, K. Dataset on SPT-based seismic soil liquefaction. Data Brief 2018, 20, 544–548. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Routledge: Abingdon-on-Thames, UK, 2018. [Google Scholar]
- Muraina, I. Ideal dataset splitting ratios in machine learning algorithms: General concerns for data scientists and data analysts. In Proceedings of the 7th International Mardin Artuklu Scientific Research Conference, Mardin, Turkey, 10–12 December 2021; pp. 496–504. [Google Scholar]
- Probst, P.; Wright, M.N.; Boulesteix, A. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip Rev. Data Min. Knowl. Discov. 2019, 9, e1301. [Google Scholar] [CrossRef]
- Han, S.; Williamson, B.D.; Fong, Y. Improving random forest predictions in small datasets from two-phase sampling designs. BMC Med. Inform. Decis. Mak. 2021, 21, 322. [Google Scholar] [CrossRef] [PubMed]
- Weinberge, K. Bagging and Random Forest (Lecture Notes, Spring 2022); Cornell University: Ithaca, NY, USA, 2022. [Google Scholar]
- Huang, B.F.F.; Boutros, P.C. The parameter sensitivity of random forests. BMC Bioinform. 2016, 17, 331. [Google Scholar] [CrossRef] [PubMed]
- Boldini, D.; Grisoni, F.; Kuhn, D.; Friedrich, L.; Sieber, S.A. Practical guidelines for the use of gradient boosting for molecular property prediction. J. Cheminform. 2023, 15, 73. [Google Scholar] [CrossRef]
- Niculescu-Mizil, A.; Caruana, R. Obtaining Calibrated Probabilities from Boosting. In Proceedings of the UAI’05: Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence, Arlington, VA, USA, 26–29 July 2005; pp. 413–420. [Google Scholar]
- Tarwidi, D.; Pudjaprasetya, S.R.; Adytia, D.; Apri, M. An optimized XGBoost-based machine learning method for predicting wave run-up on a sloping beach. MethodsX 2023, 10, 102119. [Google Scholar] [CrossRef]
- Tsai, C.A.; Chang, Y.J. Efficient selection of Gaussian Kernel SVM parameters for imbalanced data. Genes 2023, 14, 583. [Google Scholar] [CrossRef]
- Huang, Y.; Li, W.; Macheret, F.; Gabriel, R.A.; Ohno-Machado, L. A tutorial on calibration measurements and calibration models for clinical prediction models. J. Am. Med. Inform. Assoc. 2020, 27, 621–633. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.J.; O’Malley, A.J. Don’t dismiss logistic regression: The case for sensible extraction of interactions in the era of machine learning. BMC Med. Res. Methodol. 2020, 20, 171. [Google Scholar] [CrossRef]
- Zadrozny, B.; Elkan, C. Transforming classifier scores into accurate multiclass probability estimates. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 July 2002; pp. 694–699. [Google Scholar]
- Niculescu-Mizil, A.; Caruana, R. Predicting good probabilities with supervised learning. In Proceedings of the 22nd International Conference on Machine Learning, New York, NY, USA, 7–11 August 2005. pp. 625–632.
- Keller, J. Explainability in Deep Reinforcement Learning. 2024. Available online: https://tud.qucosa.de/en/landing-page/https%3A%2F%2Ftud.qucosa.de%2Fapi%2Fqucosa%253A93844%2Fmets/ (accessed on 25 August 2025).
- Khoda Bakhshi, A.; Ahmed, M.M. Utilizing black-box visualization tools to interpret non-parametric real-time risk assessment models. Transp. A Transp. Sci. 2021, 17, 739–765. [Google Scholar] [CrossRef]
- Cook, T.R.; Gupton, G.; Modig, Z.; Palmer, N.M. Explaining Machine Learning by Bootstrapping Partial Dependence Functions and Shapley Values; Federal Research Bank of Kansas City: Kansas City, MO, USA, 2021. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Greenwell, B.M. pdp: An R package for constructing partial dependence plots. R J. 2017, 9, 421–436. [Google Scholar] [CrossRef]
- Apley, D.W.; Zhu, J. Visualizing the effects of predictor variables in black box supervised learning models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2020, 82, 1059–1086. [Google Scholar] [CrossRef]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Efron, B. Bootstrap methods: Another look at the jackknife. In Breakthroughs in Statistics: Methodology and Distribution; Springer: Berlin/Heidelberg, Germany, 1992; pp. 569–593. [Google Scholar]
- Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genom. 2020, 21, 6. [Google Scholar] [CrossRef]
- Silva Filho, T.; Song, H.; Perello-Nieto, M.; Santos-Rodriguez, R.; Kull, M.; Flach, P. Classifier calibration: A survey on how to assess and improve predicted class probabilities. Mach Learn. 2023, 112, 3211–3260. [Google Scholar] [CrossRef]
- Yuan, Y.; Wu, L.; Zhang, X. Gini-impurity index analysis. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3154–3169. [Google Scholar] [CrossRef]
- Duan, W.; Congress, S.S.C.; Cai, G.; Zhao, Z.; Pu, S.; Liu, S.; Dong, X.; Wu, M.; Chen, R. Characterizing the in-situ state of sandy soils for liquefaction analysis using resistivity piezocone penetration test. Soil Dyn. Earthq. Eng. 2023, 164, 107529. [Google Scholar] [CrossRef]
- Cetin, K.O.; Seed, R.B.; Kayen, R.E.; Moss, R.E.S.; Bilge, H.T.; Ilgac, M.; Chowdhury, K. SPT-based probabilistic and deterministic assessment of seismic soil liquefaction triggering hazard. Soil Dyn. Earthq. Eng. 2018, 115, 698–709. [Google Scholar] [CrossRef]
- Muftuoglu, G.M.; Dehghanian, K. Soil Liquefaction Assessment Using Machine Learning. Artif. Intell. Geosci. 2025, 6, 100122. [Google Scholar] [CrossRef]
- Kumar, D.R.; Samui, P.; Burman, A.; Wipulanusat, W.; Keawsawasvong, S. Liquefaction susceptibility using machine learning based on SPT data. Intell. Syst. Appl. 2023, 20, 200281. [Google Scholar] [CrossRef]
- Liu, H.; Su, H.; Sun, L.; Dias-da-Costa, D. State-of-the-art review on the use of AI-enhanced computational mechanics in geotechnical engineering. Artif. Intell. Rev. 2024, 57, 196. [Google Scholar] [CrossRef]
Variable | Unit | Role | Description |
---|---|---|---|
Liquefaction status | - | Target | Field outcome (Yes = liquefied, No = non-liquefied); encoded 1/0. |
N1,60,CS | Blows/ft | Predictor | Fines-corrected, overburden-normalized SPT blow count. |
CSR7.5,1 | - | Predictor | Cyclic stress ratio normalized to σv′ = 1 atm and Mw = 7.5 |
Data class | A, B, C | Sample weight | Quality category |
Statistic | N1,60,CS | CSR7.5,1 |
---|---|---|
Count | 208 | 208 |
Mean | 18.24 | 0.22 |
Std. dev. | 11.79 | 0.11 |
Min. | 4.95 | 0.03 |
25th percentile | 9.96 | 0.14 |
Median | 14.36 | 0.21 |
75th percentile | 23.15 | 0.28 |
Max. | 66.46 | 0.51 |
Model | AUC | Accuracy | F1 | Brier | Optimal Threshold |
---|---|---|---|---|---|
RF (uncalibrated) | 0.96 | 0.92 | 0.93 | 0.10 | 0.79 |
RF (isotonic-calibrated) | 0.95 | 0.91 | 0.92 | 0.09 | 0.77 |
Variable | Target Pliq | Median | 90% CI Lower | 90% CI Upper |
---|---|---|---|---|
N1,60,CS | 0.05 | 26.02 | 9.95 | 47.63 |
0.20 | 24.22 | 8.68 | 26.81 | |
0.50 | 21.35 | 8.68 | 26.09 | |
0.80 | 18.09 | 7.44 | 22.98 | |
0.95 | 15.71 | 7.44 | 20.51 | |
CSR7.5,1 | 0.05 | 0.21 | 0.05 | 0.48 |
0.20 | 0.22 | 0.08 | 0.48 | |
0.50 | 0.25 | 0.09 | 0.49 | |
0.80 | 0.26 | 0.11 | 0.49 | |
0.95 | 0.28 | 0.14 | 0.49 |
(Pliq) | True Non-Liquefied (Pred. Non-Liq.) | True Non-Liquefied (Pred. Liq.) | True Liquefied (Pred. Non-Liq.) | True Liquefied (Pred. Liq.) |
---|---|---|---|---|
0.05 | 12.5 | 1.4 | 8.5 | 9.1 |
0.20 | 13.9 | 0 | 9.2 | 8.4 |
0.50 | 13.9 | 0 | 12.7 | 4.9 |
0.80 | 13.9 | 0 | 12.7 | 4.9 |
0.95 | 13.9 | 0 | 13.4 | 4.2 |
P | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
0.05 | 0.69 | 0.87 | 0.52 | 0.65 |
0.20 | 0.71 | 1.00 | 0.48 | 0.65 |
0.50 | 0.60 | 1.00 | 0.28 | 0.44 |
0.80 | 0.60 | 1.00 | 0.28 | 0.44 |
0.95 | 0.57 | 1.00 | 0.24 | 0.39 |
Pliq | Proposed N1,60,CS Median 1 | Proposed CSR7.5,1 Median 1 | Cetin et al. (2018) [37] CSR7.5,1 at Proposed N1,60,CS 2 | Cetin et al. (2018) [37] FS | ΔCSR7.5,1 (%) | Implied FS (Proposed Model) 3,4 |
---|---|---|---|---|---|---|
0.05 | 26.02 | 0.21 | ≈0.21 | 1.5 | 0 | 1.67 |
0.20 | 24.22 | 0.22 | ≈0.23 | 1.2 | −4 | 1.37 |
0.50 | 21.35 | 0.25 | ≈0.22 | 1.0 | +14 | 0.94 |
0.80 | 18.09 | 0.26 | ≈0.21 | 0.8 | +24 | 0.68 |
0.95 | 15.71 | 0.28 | ≈0.20 | 0.7 | +40 | 0.52 |
Step | What is Checked | Numbers | Outcome |
---|---|---|---|
1 | Target risk level | Pliq = 20% | - |
2 | Corrected inputs | N1,60,CS = 24.0 blows/ft; CSR7.5,1 = 0.22 | - |
3 | Proposed thresholds (Table 4, medians) | Nthr = 24.22; CSR7.5,1,thr = 0.22 | - |
4 | Resistance check | Is N1,60,CS ≤ Nthr? → 24.0 ≤ 24.22 | Yes |
5 | Demand check | Is CSR7.5,1 ≥ CSR7.5,1,thr? → 0.22 ≥ 0.22 | Yes |
6 | Dual-rule result | Both conditions satisfied | Susceptible |
7 | Legacy boundary at N ≈ 24 (Table 7) | CSRref ≈ 0.23; compare 0.22 < 0.23 | Not susceptible |
8 | Takeaway | Near-threshold divergence; prompts confirmatory steps (e.g., CPT/Vs profiling, site-specific response analysis) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, H.S. Risk-Informed Dual-Threshold Screening for SPT-Based Liquefaction: A Probability-Calibrated Random Forest Approach. Buildings 2025, 15, 3206. https://doi.org/10.3390/buildings15173206
Alharbi HS. Risk-Informed Dual-Threshold Screening for SPT-Based Liquefaction: A Probability-Calibrated Random Forest Approach. Buildings. 2025; 15(17):3206. https://doi.org/10.3390/buildings15173206
Chicago/Turabian StyleAlharbi, Hani S. 2025. "Risk-Informed Dual-Threshold Screening for SPT-Based Liquefaction: A Probability-Calibrated Random Forest Approach" Buildings 15, no. 17: 3206. https://doi.org/10.3390/buildings15173206
APA StyleAlharbi, H. S. (2025). Risk-Informed Dual-Threshold Screening for SPT-Based Liquefaction: A Probability-Calibrated Random Forest Approach. Buildings, 15(17), 3206. https://doi.org/10.3390/buildings15173206