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Abstract

Soil liquefaction poses a significant risk to foundations during earthquakes, prompt-
ing the need for simple, risk-aware screening tools that go beyond single deterministic
boundaries. This study creates a probability-calibrated dual-threshold screening rule us-
ing a random forest (RF) classifier trained on 208 SPT case histories with quality-based
weights (A/B/C = 1.0/0.70/0.40). The model is optimized with random search and cal-
ibrated through isotonic regression. Iso-probability contours from 1000 bootstrap sam-
ples produce paired thresholds for fines-corrected, overburden-normalized blow count
N1,60,CS and normalized cyclic stress ratio CSR7.5,1 at target liquefaction probabilities
Pliq = 5%, 20%, 50%, 80%, and 95%, with 90% confidence intervals. On an independent
test set (n = 42), the calibrated model achieves AUC = 0.95, F1 = 0.92, and a better Brier score
than the uncalibrated RF. The screening rule classifies a site as susceptible when N1,60,CS

is at or below and CSR7.5,1 is at or above the probability-specific thresholds. Designed for
level ground, free field, and clean-to-silty sand sites, this tool maintains the familiarity of
SPT-based charts while making risk assessment transparent and auditable for different facil-
ity importance levels. Sensitivity tests show its robustness to reasonable rescaling of quality
weights. The framework offers transparent thresholds with uncertainty bands for routine
preliminary assessments and to guide the need for more detailed, site-specific analyses.

Keywords: building earthquake resilience; cyclic stress ratio; dual-threshold framework;
machine learning in geotechnics; probabilistic seismic hazard; random forest classifier;
risk-informed seismic design; soil liquefaction assessment; standard penetration test

1. Introduction
Soil liquefaction is a critical limit state in earthquake engineering, characterized by the

temporary loss of soil strength and stiffness resulting from the buildup of excess pore water
pressure during seismic activity [1,2]. For buildings and their foundations, liquefaction
can weaken load transfer, cause differential settlement, and increase lateral spreading
demands, threatening structural integrity and serviceability. Liquefaction therefore exerts a
significant impact on the stability of foundations, earth structures, and lifelines [3,4]. Recent
earthquakes demonstrate this hazard: the 6 February 2023 Turkey–Syria earthquakes
(Mw = 7.7 and Mw = 7.6) caused widespread liquefaction and lateral spreading in urban
and agricultural areas, damaging critical infrastructure, homes, and levees [5]. Similarly,
the 27 July 2022 Northwestern Luzon earthquake in the Philippines (Mw = 7.0) triggered
extensive liquefaction, resulting in sand boils and ground fissures that severely impacted
local communities [6]. These recent events, along with historically significant ones such
as the 2010–2011 Canterbury earthquakes in New Zealand [5] and the 2011 Mw = 9.0
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Tōhoku earthquake in Japan [7] underscore the urgent need for reliable criteria to predict
liquefaction occurrence and to inform performance-based building design. Although
progress has been made in in situ testing, the Standard Penetration Test (SPT) remains
one of the most widely used methods for estimating liquefaction resistance [8,9]. As a
result, practitioners require more effective assessment tools that can utilize traditional SPT
parameters (such as normalized blow count) to evaluate liquefaction risk directly, rather
than relying solely on deterministic safety factors.

The seminal SPT-based liquefaction chart by Seed and Idriss [10] introduced a single
empirical curve that differentiates between liquefiable and non-liquefiable states based
on cyclic stress ratio (CSR) versus SPT blow count. Seed’s simplified method was later
refined by Seed in 1979 [11] and became the standard; however, it offers a single-risk, fixed
CSR–N boundary that fails to account for different failure probabilities. Essentially, the
traditional deterministic threshold reflects a fixed safety margin, roughly corresponding
to a Pliq of about 15% for the design earthquake, without allowing engineers to adjust the
acceptable risk level. Post-1990 updates, such as the Idriss and Boulanger refined SPT
correlations, which include improved overburden and magnitude scaling corrections [12],
continue to produce generic curves without specifying an explicit probability level. As a
result, when designing shallow or deep foundation systems for buildings in seismic regions,
engineers often must adopt conservative assumptions (e.g., an FS greater than 1.5) or rely
on professional judgment that may lack formal risk calibration [4].

In the 2000s, researchers began introducing probabilistic liquefaction models to es-
timate the likelihood of triggering. Cetin et al. (2004) [13] developed a reliability-based
SPT correlation, and Moss et al. (2006) [14] created a complementary CPT-based model,
each providing an estimated Pliq for specific site parameters. These pioneering studies
incorporated risk into the assessment. However, the resulting equations are mathematically
complex and cannot be easily simplified into straightforward field curves, limiting their use
in routine practice. More recently, machine learning (ML) classifiers have been applied to
liquefaction datasets. For example, Rahman et al. (2025) used support vector machines on
regional case data and reported excellent predictive performance (area under the receiver
operating characteristic (ROC) curve values around 0.98) [15]. Similarly, high accuracy
(AUC > 0.95) has been achieved using ensemble methods, such as gradient boosting and
RF [16,17]. Nonetheless, these black box models often lack transparent, calibrated threshold
values that practitioners can interpret and trust. As noted in a recent review [18], many
ML-based liquefaction models are presented with excessive complexity or are not made
accessible to engineers, which has hindered their acceptance in practice, especially within
the building design community, where prescriptive and auditable criteria are essential.

The limitations discussed above motivate a new approach that blends data-driven
rigor with practical simplicity. The present work addresses two key gaps. First, it calls for
a dual-parameter, probability-graded liquefaction criterion that directly supports seismic
foundation design and is (i) based on field data, (ii) calibrated to an actual Pliq, and
(iii) simplified for use by engineers. Unlike traditional single-line charts, a probability-
explicit criterion allows engineers to choose different safety levels (e.g., 5%, 20%, 50%,
80%, or 95% chance of liquefaction) and determine the corresponding SPT-CSR cutoff
values. The second gap pertains to measuring model uncertainty, such as through bootstrap
resampling, and accounting for varying case history qualities without adding unnecessary
scatter to the final design thresholds. To do this, the work employs a case weighting scheme
that emphasizes high-quality SPT data, similar to the expert judgment filters used by
Moss et al. [14]. It uses bootstrapped CIs to ensure the thresholds are statistically reliable.
Figure 1 shows the study workflow, which includes compiling the SPT database, training



Buildings 2025, 15, 3206 3 of 26

the RF model, calibrating probabilities, and converting the results into a straightforward
design rule.

Figure 1. Workflow: SPT data → random forest model → calibration → dual-threshold rule.

The goal is to develop a liquefaction evaluation framework that preserves the fa-
miliarity of SPT-based charts while offering rigorous, risk-focused guidance for building
projects of different importance levels, distinguishing between ordinary and critical facili-
ties. The contribution is translational: transforming a widely used, openly accessible SPT
liquefaction database into a calibrated, probability-based dual-threshold screening rule
with 90% bootstrap confidence intervals and an explicit applicability domain through
the Coverage Extrapolation Map. The advancement includes four key aspects: (i) a
quality-weighted, isotonic-calibrated random forest restricted to N1,60,CS and CSR7.5,1 for
transparency; (ii) bootstrap extraction of iso-probability contour pairs at selectable Pliq;
(iii) delineation of the applicability domain to identify extrapolation; and (iv) a concise
decision flow for routine screening. This approach complements ongoing database expan-
sion efforts (e.g., recent global SPT updates), with a focus on operationalizing risk-explicit
thresholds for practical use. This study presents a practical, risk-aware tool for preliminary
liquefaction assessment, offering insights into the conservatism of traditional charts com-
pared to an optimized, data-driven model that is directly applicable to seismic foundation
design in the built environment.

The rest of this paper is organized as follows. Section 2 reviews previous deterministic,
probabilistic, and ML methods for SPT-based liquefaction assessment, highlighting remain-
ing gaps. Section 3 describes the field case history database and explains the development
of the quality-weighted, probability-calibrated RF model. Section 4 evaluates the model’s
performance and establishes the probabilistic SPT-CSR dual thresholds. Section 5 compares
the proposed criteria with legacy boundaries, assesses the impact of data quality weighting,
and discusses limitations and potential future extensions. Section 6 summarizes the key
findings and recommendations for implementation.
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2. Literature Review
Traditional deterministic, stress-based frameworks are used to assess soil liquefac-

tion potential, relying on empirical correlations between cyclic stress demands and soil
resistance. Seed and Idriss (1971) [10] introduced the first simplified stress-based ap-
proach, linking the cyclic stress ratio (CSR) required for liquefaction to Standard Penetra-
tion Test (SPT) blow counts normalized to a standard overburden pressure and hammer
energy (N1,60). Their key chart distinguished between liquefiable and non-liquefiable
soils based on a binary boundary, calibrated using case histories from the 1964 Alaska
and Niigata earthquakes. The simplified liquefaction evaluation method proposed by
Seed and Idriss (1971) [10,11] was further developed by Seed (1979) [11] to address cyclic
mobility and level ground conditions.

Seed et al. (1985) [19] further refined it by standardizing SPT blow counts to (N1)60

with energy corrections (CE) and introducing fines content (FC) corrections, building on
the overburden normalization factor (CN) from 1971. These advancements, particularly
the (N1)60 standard, have been incorporated into international engineering standards and
guidelines, influencing modern building foundation design practice. The Seed and Idriss
procedure, as refined, standardizes inconsistent data across case histories using CN, CE,
and FC corrections [10,11,19]. Despite these improvements, the deterministic nature of the
original method had inherent limitations, including a fixed reference earthquake magnitude
of Mw = 7.5 and the inability to evaluate uncertainty explicitly [8,20]. For construction
projects characterized by different importance factors, this inflexibility compels designers
to either accept an uncertain degree of conservatism or utilize ad hoc safety factors that
may not be consistent with performance-based regulatory objectives.

Recognizing the need for risk-focused assessment, probabilistic methods appeared
in the late 1980s. Liao and Whitman (1988) employed logistic regression to develop lique-
faction probability curves, marking a significant shift from purely deterministic perspec-
tives [21]. Their method provided a quantitative risk framework, although it remained
relatively simple due to the limited data and covariates available. Later, Youd and Noble
(1997) improved logistic techniques by including more earthquake data, further advancing
probabilistic SPT-based criteria [22]. These developments opened the door for explicitly
using exceedance probabilities in foundation design decisions.

Cetin et al. (2004) made a significant advance by applying Bayesian statistical up-
dates to liquefaction assessment [13]. Their framework explicitly incorporates uncertainty
through a comprehensive reliability-based model that considers site parameters such as
vertical effective stress (σv

′) and fines content (FC). Additionally, Cetin et al. grouped field
case histories into three quality categories (A, B, and C). Each field case was rated A–E for
data quality; lower-quality cases carry larger variances in the likelihood function, giving
high-quality data proportionally greater influence. The resulting contours for Pliq = 5–95%
provide practical, probability-based triggering thresholds; however, designers must still
select an appropriate target probability [23].

Parallel advancements occurred in alternative in situ test-based assessments, exem-
plified by Moss et al. (2006) [14], who developed a Cone Penetration Test (CPT)-based
Bayesian approach, offering probabilistic insights more directly linked to continuous, dig-
itally recorded measurements. Similarly, Kayen et al. (2013) [24] introduced shear-wave
velocity (Vs)-based probabilistic models, broadening the options for liquefaction assess-
ment; however, both CPT- and Vs-based methods remain mathematically complex, limiting
their routine use by building practitioners, who still rely heavily on SPT data.

In subsequent developments, Idriss and Boulanger (2010, 2014) [12,25] revisited de-
terministic frameworks by significantly recalibrating the original Seed and Idriss CSR-N
curves. Their updated relationships included refined adjustments for fines content and
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improved magnitude scaling corrections, addressing several empirical limitations of the
original model. Boulanger and Idriss (2014) [25] notably introduced a probabilistic inter-
pretation by outlining a CSR-N curve that approximately corresponds to a Pliq of 15%.
However, their curves were still presented graphically rather than analytically, which lim-
ited straightforward integration into automated design workflows or Building Information
Modeling (BIM) platforms.

Against this historical backdrop, the past decade has seen an increase in the application
of ML techniques to liquefaction research. ML models such as RF, gradient boosting, and
Artificial Neural Networks (ANNs) have demonstrated predictive accuracies with AUC
values above 0.95 [15–17,26,27]. The primary benefit of these models is their ability to
identify complex, nonlinear relationships and interactions in large liquefaction datasets,
significantly outperforming traditional regression-based methods in terms of classification
accuracy [16]. However, adoption within structural engineering offices has been slow
because most ML studies only provide predictive scores and do not supply code-based
thresholds that can be directly cited in foundation design reports.

Despite these strengths, ML-based approaches often face criticism for their limited
interpretability and practicality. The models, usually referred to as “black boxes,” frequently
lack clear, calibrated threshold standards, making it difficult for practitioners to turn high
predictive performance into actionable decisions [27,28]. Additionally, ML probabilities
often need external calibration to be compatible with reliability-based design frameworks
used in building codes.

In response to these concerns, recent research has begun integrating robust classifiers
with interpretability tools in liquefaction and soil hazard contexts. For example, Jas et al.
expanded Cetin’s database and used XGBoost with Synthetic Minority Over-sampling
Technique (SMOTE) resampling to predict liquefaction; Shapley Additive exPlanations
(SHAP) analysis showed that equivalent clean sand cone penetration resistance and the per-
meability coefficient were the primary factors influencing predictions [29]. Hsiao et al. [30]
developed XGBoost models to forecast liquefaction-induced lateral spreading following
the 2011 Christchurch earthquake; SHAP analysis found PGA to be the most influential
global feature, while CPT-derived soil parameters provided valuable local explanatory
insights but had lower overall importance. Other groups combined ensemble models and
deep learning: a recent Scientific Reports study compared Bi-LSTM, XGBoost, and ran-
dom forest on an extensive CPT-based database, finding that although recurrent networks
achieved the highest accuracy, SHAP applied to the XGBoost model identified normalized
tip resistance, peak ground acceleration, and the stress-reduction ratio as the most influ-
ential factors [31]. A smaller dataset study on granular soils compared SVM (polynomial
and RBF kernels) and random forest classifiers, using model-based feature importance
to identify cone tip resistance, overburden stress, peak ground acceleration, earthquake
magnitude, liquefied layer thickness, and gravel content as the most influential factors in
liquefaction classification [32]. Beyond liquefaction, interpretable frameworks have been
used for tunnel convergence and expansive soil swelling; in these cases, SHAP and partial
dependence plots quantify how time, rock quality, and the plasticity index influence predic-
tions and reveal threshold behaviors [33,34]. Complementing these efforts on the structural
side, a 2025 Structures study on steel diagrid systems trained 21 algorithms on incremen-
tal dynamic analysis (IDA)-generated datasets across 4–24-story buildings; tree-based
ensembles (Extra Trees, bagging, random forest, Stacking, k-nearest neighbors (KNNs))
achieved R2 > 0.95, and feature-importance/sensitivity analyses highlighted structural
weight, fundamental period T1, and spectral acceleration at the fundamental period (Sa(T1))
as dominant predictors [35]. However, probability calibration and uncertainty quantifica-
tion were not performed. Overall, these studies demonstrate that integrating advanced ML
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techniques with SHAP/TreeSHAP, partial-dependence plots (PDPs)/accumulated local
effects (ALEs), and similar tools can uncover physically meaningful insights from complex
data. Nonetheless, most still report uncalibrated probabilities and stop short of proposing
simple, clearly defined decision thresholds.

The quality and completeness of field data remain vital issues in liquefaction modeling.
Cetin et al. (2004) [13] pioneered a quality class weighting system (classes A, B, C) that set a
standard by measuring data quality uncertainty within probabilistic models. Recent efforts,
such as those by Ilgac et al. (2022) [36], have greatly expanded SPT liquefaction databases,
compiling an extensive list of more than 400 quality-ranked case histories. Their analyses
emphasize how weight assignments heavily influence both regression-based models and
ML classifiers, with even minor changes in weighting schemes potentially altering the pre-
dictive outcomes. This sensitivity underscores the importance of explicitly integrating data
quality considerations into modern probabilistic and ML-based liquefaction evaluations.

Despite significant methodological advances, notable gaps still exist. No existing
studies have transformed complex ML classifiers into simple, dual-threshold decision rules
that (i) are explicitly calibrated for quantified Pliq, (ii) include statistical CI, and (iii) are
easy enough to be incorporated into building foundation design checklists. Additionally,
the robustness of such thresholds under uniform down-weighting scenarios, which are
common when older site investigations are incomplete, has received little attention.

This study addresses these gaps by combining a calibrated RF classifier with proba-
bility calibration techniques. PDP and ALE plots enhance interpretability, and bootstrap
resampling measures uncertainty, yielding transparent, statistically reliable dual-threshold
rules that engineers can easily apply to select risk-appropriate SPT cutoffs for standard,
necessary, or essential building facilities. This method blends the predictive power of
modern ML with the clarity needed for risk-based building design criteria.

3. Methodology
3.1. Field Case Database and Screening

The dataset used in this study comes from the open-access SPT-based liquefaction case
history collection published by Cetin et al. (2018) [37], which expands the foundational cat-
alog originally developed by Cetin et al. (2004) [13]. This compilation gathers high-quality
field observations from multiple seismic events, each with geotechnical and seismological
parameters relevant for assessing liquefaction potential. To keep the model practical and
straightforward, only two predictor variables were retained: (i) N1,60,CS the fines-corrected,
overburden-normalized Standard Penetration Test (SPT) blow count, expressed in blows
per foot (blows/ft), and (ii) CSR7.5,1 the cyclic stress ratio normalized to a reference earth-
quake magnitude (Mw = 7.5) and vertical effective stress of 1 atm. The binary target
variable “Liquefied” indicates field performance observations, where 1 signifies confirmed
liquefaction and 0 means no liquefaction. Among the 210 total cases, two records were
marked as “Yes/No (marginal),” indicating inconclusive or uncertain liquefaction results.
These marginal records were removed to prevent bias during model training, resulting
in a final dataset of 208 clear cases: 113 liquefied and 95 non-liquefied. All analyses used
the publicly available SPT-based liquefaction case history dataset. No new field data was
gathered. The deliberate choice of a single, widely cited source enhances reproducibility
and comparability with established curves; the innovation lies in probability calibration,
bootstrap threshold extraction, and applicability-domain mapping, rather than expanding
the database. In this study, CSR7.5,1 denotes site demand normalized to standard conditions.
The free field cyclic stress ratio is first obtained from the simplified procedure,

CSR = 0.65
(

amax

g

)(
σv

σv ′

)
rd(z)
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where amax is peak ground acceleration, g is gravity, σv and σv
′ are total/effective overbur-

den, and rd(z) is the depth-dependent stress-reduction factor.
Including the depth-dependent stress-reduction factor rd(z) and overburden effects.

CSR is then normalized to Mw = 7.5 using an MSF and to σv
′ = 1 atm, resulting in

CSR7.5,1. Hence, CSR7.5,1 encompasses standard depth and stress adjustments along with
magnitude scaling.

Table 1 presents the definitions, roles, and units for the remaining three columns:
N1,60,CS and CSR7.5,1, which serve as numerical predictors, and the Liquefied column,
which is the target variable. Although the original database included additional parameters
such as fines content, effective stress, and magnitude, this study’s modeling framework
deliberately focuses on a simple set of features to improve interpretability and practical
use. Restricting predictors to N1,60,CS and CSR7.5,1 minimizes cross-study heterogeneity
(e.g., inconsistent fines content corrections and magnitude scaling corrections), reduces
missingness and imputation bias, and aligns with the data most commonly available in
geotechnical investigations. The two-parameter specification also supports transparent,
auditable criteria favored in practice, addressing the adoption barriers noted for complex
ML models. In addition to the predictors and target, each case is assigned a quality
label (Class A, B, or C), which is later used to develop a quality-weighted sample scheme
during model training. This approach provides a clear and consistent framework for Pliq

assessment using only widely available SPT-based parameters.

Table 1. Variables retained for random forest modeling (n = 208 field cases).

Variable Unit Role Description
Liquefaction status - Target Field outcome (Yes = liquefied, No = non-liquefied); encoded 1/0.

N1,60,CS Blows/ft Predictor Fines-corrected, overburden-normalized SPT blow count.
CSR7.5,1 - Predictor Cyclic stress ratio normalized to σv

′ = 1 atm and Mw = 7.5
Data class A, B, C Sample weight Quality category

Descriptive statistics for the two selected input variables are provided in Table 2.
The variable N1,60,CS ranges from 4.95 to 66.46, with an average of 18.24 and a standard
deviation of 11.79. CSR7.5,1 varies from 0.03 to 0.51, with an average of 0.22 and a standard
deviation of 0.11. Median values and interquartile ranges are also included, confirming
that the dataset covers a wide distribution of soil resistances and seismic demands. This
statistical variation suggests that the model can effectively generalize across a diverse range
of geotechnical conditions relevant to practical seismic design.

Table 2. Descriptive statistics for key variables (n = 208).

Statistic N1,60,CS CSR7.5,1

Count 208 208
Mean 18.24 0.22

Std. dev. 11.79 0.11
Min. 4.95 0.03

25th percentile 9.96 0.14
Median 14.36 0.21

75th percentile 23.15 0.28
Max. 66.46 0.51

The Cetin et al. (2004) [13] SPT-based liquefaction triggering database includes field
case histories from various international earthquakes across different tectonic settings such
as subduction zones, crustal strike-slip, and typical faulting regimes. It features sites from
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the United States, Japan, Türkiye, Taiwan, and New Zealand, among others, spanning
North America, the Asia-Pacific region, and parts of Europe and the Middle East. The site
conditions cover a wide array of geomorphic and depositional environments, including
coastal and deltaic plains, estuarine and river alluvium, lake deposits, and reclaimed
port fills. The soils mainly consist of clean-to-silty sands, with occasional sandy gravels.
The database records a broad range of corrected blow counts (N1,60,CS) and equivalent
cyclic stress ratios (CSR7.5,1), supporting the overall applicability of the probabilistic and
deterministic triggering correlations derived from it. This geotechnical and seismic diversity
improves the relevance of the dual-threshold screening framework for routine foundation
design in coastal and alluvial basin environments.

Figure 2 shows a visual representation of the 208 field cases, plotting CSR7.5,1 against
N1,60,CS, with liquefied cases highlighted in red and non-liquefied cases in blue. The
figure clearly illustrates the inverse relationship between cyclic stress demand and in situ
resistance, with liquefaction typically occurring in cases of high CSR7.5,1 and low N1,60,CS.
This visual separation confirms the effectiveness of the chosen predictors and further
supports the development of a dual-threshold rule based on this two-dimensional space.

 

Figure 2. CSR7.5,1 vs. N1,60,CS scatter; red = liquefied, blue = not liquefied. Data:
Cetin et al. (2018) [37].

To visualize how well the 208 weighted cases populate the (N1,60,CS, CSR7.5,1) plane,
a bivariate kernel density estimate [38] was computed on the standardized predictors (z-
scored to a mean of zero and unit variance) using the quality weights wi = (1.0, 0.70, 0.40).
The smallest contours that enclose 50% and 90% of the total weighted probability mass were
extracted; these define a Core zone (densest half of the weighted data, where predictions rely
on strong interpolation), a Support zone (the next 40% of weighted data, still interpolative
but sparser), and an Extrapolation zone (the outer 10%, where little or no data exists and
predictions must be used with caution).

Figure 3 shows the resulting Coverage Extrapolation Map (CEM): 60% of the weighted
evidence (122 cases) lies in the Core zone, 33% (71 cases) lies in the Support zone, and only
7% (15 cases) falls in the Extrapolation zone, providing a clear basis for judging where data
strongly supports subsequent model predictions.

Using data outside the Core/Support zones involves statistical extrapolation; such
predictions should only be considered screening-level and must be validated against
independent observations. When possible, recent region-specific events (e.g., the 2023
Turkey–Syria earthquakes) should be used as an external check to confirm the transferability
of the dual-threshold rule under local geologic and seismotectonic conditions.
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Figure 3. Coverage Extrapolation Map (CEM).

3.2. Pre-Processing and Quality-Weighted Sample Scheme

Cetin et al. [13] classify each field case based on how well the critical stratum is
sampled and the statistical spread of its cyclic stress estimate (using quality classes A,
B, and C as reported unchanged in Cetin et al. (2018)) [37]. Class A requires at least
three corrected SPT blows in the liquefiable layer, well-documented equipment and pro-
cedures, and a coefficient of variation for CSR (COV-CSR) no more than 0.20. Class B
retains the documentation requirement but allows either 0.20 < COV-CSR ≤ 0.35 or fewer
than three N-values per stratum. Class C still has complete procedural details but permits
0.35 < COV-CSR ≤ 0.50.

To account for the growing measurement uncertainty while preventing lower-quality
data from dominating, the analysis assigns weights of 1.0, 0.70, and 0.40 to Classes A, B, and
C, respectively. Quality-based reweighting aligns with reliability-based liquefaction frame-
works that lessen the impact of lower-quality cases by assigning larger variances in the likeli-
hood, effectively down-weighting them [13,14,24]. Moving from Class A (COV-CSR ≤ 0.20)
to Class B (0.20 < COV-CSR ≤ 0.35) involves a moderate decrease; the 0.70 factor reflects this
initial increase in dispersion. The 0.40 factor for Class C (0.35 < COV-CSR ≤ 0.50) indicates
significantly greater uncertainty, as documented in the Cetin et al. quality taxonomy and
the variance inflation used for lower-confidence cases in CPT- and Vs-based probabilistic
models [13,14,24]. Recent meta-analyses of SPT databases also emphasize the sensitiv-
ity of model results to case-quality weighting and endorse explicit down-weighting of
lower-quality records [36].

3.3. Random Forest Development

The dataset comprises 208 field case histories (113 liquefied, 95 non-liquefied). It
was partitioned into training (80%, n = 166) and testing (20%, n = 42) subsets to maintain
the original class imbalance, thereby ensuring that both subsets accurately represent the
liquefaction proportions and improve evaluation reliability [39]. Sample weights, assigned
according to data quality classifications (A = 1.0, B = 0.7, C = 0.4), were utilized to prioritize
higher-quality observations during the model training process.

An RF classifier was trained using N1,60,CS and CSR7.5,1 as predictors, with the bi-
nary liquefaction outcome serving as the target. Hyperparameter tuning was conducted
through a randomized search involving 100 parameter combinations within a five-fold strat-
ified cross-validation framework, aiming to optimize the area under the ROC curve [40].
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The search space included 60 to 300 trees; max_depth set to None or values between 3
and 15; min_samples_split ranging from 2 to 10; min_samples_leaf ranging from 1 to 10;
max_features selected from “sqrt,” “log2,” or None; and both bootstrap options considered.
A fixed random seed (random_state = 42) ensured reproducibility. The best configuration
consisted of 97 trees, with max_depth = 5, min_samples_split = 2, min_samples_leaf = 8,
max_features = None, and bootstrap enabled. Five-fold stratified learning curves showed
an AUC plateau between approximately 80 and 150 trees; choosing 97 estimators at the
curve’s knee minimized variance without additional cost. A shallow depth (≤5), with at
least 8 samples per leaf, provided the best bias–variance trade-off in cross-validated AUC
and Brier loss.

RF was selected as the primary classifier because it provides a good balance between
predictive accuracy, calibration, and computational efficiency for small tabular datasets [41].
The approach involves building multiple decision trees on bootstrap samples and combin-
ing their predictions, which reduces variance and ensures stable performance even with
limited data [41–43]. It has a few hyperparameters and is relatively insensitive to their
settings, making model tuning easier [42,43]. In contrast, gradient boosting algorithms
(e.g., XGBoost, LightGBM) can achieve high accuracy but tend to overfit small datasets
and require careful tuning of learning rates, tree depth, and regularization [44–46]. Sup-
port vector machines with RBF kernels need cross-validation for probability calibration
and are sensitive to the penalty parameter and kernel width [47,48]. Logistic regression
offers well-calibrated probabilities but assumes a linear decision boundary and may miss
nonlinear interactions present in liquefaction behavior [49]. By combining bagging with
random feature selection, RF maintains the ability to model nonlinear relationships while
staying stable across bootstrap samples, and isotonic regression can adjust the slight bias in
its raw probability estimates.

3.4. Probability Calibration

Predicted probabilities from the RF were recalibrated using isotonic regression [50,51].
A five-fold stratified cross-validation on the training set created an adjusted mapping
between raw probabilities and observed liquefaction frequencies, which was then ap-
plied to the independent test set. Calibration quality was evaluated using reliability
diagrams, which show the average predicted probability versus the observed frequency
across ten quantile bins, and by calculating the Brier score loss. Discrimination before
and after calibration was compared using the area under the ROC curve to confirm that
probability adjustment did not harm overall model performance.

3.5. ALE and PDP Computation

PDPs were created by assessing the model’s predicted Pliq across the observed range
of each predictor, while fixing the other predictor at its median value [52]. ALE profiles
were generated by dividing each predictor into 40 quantile-based bins, ensuring each
bin contains an equal number of observations for more reliable effect estimates [53]. The
local differences in predictions between neighboring bin edges were calculated, and then
these differences were cumulatively summed. The curve was centered at a zero mean to
emphasize deviations from the average. A two-dimensional ALE surface illustrating the
combined effects of N1,60,CS and CSR7.5,1 was subsequently produced by integrating local
effects along both predictor axes.

3.6. Contour-Based Threshold Extraction and Bootstrap Confidence Intervals

Dual thresholds for N1,60,CS and CSR7.5,1 were established using a contour-based
extraction method combined with bootstrap resampling to assess uncertainty. The contour-
based extraction method involves generating a modeled probability surface over a 2D
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grid and extracting iso-probability contour lines (level sets) at specified probabilities to
identify threshold points [29,54–57]. One thousand bootstrap samples were generated
by sampling with replacement from the training set [58,59]. For each replicate, the RF
model was retrained and recalibrated, and a complete probability surface over N1,60,CS and
CSR7.5,1 was generated. Contour lines corresponding to target Pliq of 0.05, 0.20, 0.50, 0.80,
and 0.95 were then derived from these surfaces to find pairs of threshold values. These
threshold pairs were aggregated across all 1000 replicates, and the median threshold for
each probability level, along with its 90% CI, was calculated. The procedure captures both
model variability and sampling uncertainty, providing robust, probability-based criteria for
practical liquefaction evaluation. The number of bootstrap replicates was set to 1000 after a
convergence check over 200–2000 replicates; median thresholds and 90% CI endpoints were
stabilized by approximately 800 replicates, with only marginal changes afterward relative to
the reporting precision; thus, the choice of 1000 balances stability and computational cost.

3.7. Dual-Threshold Rule and Validation Procedure

The probability-based thresholds outlined in Section 3.6 are combined into a dual-
threshold screening rule for field use. For a specified Pliq level (P = 0.05, 0.20, 0.50, 0.80,
or 0.95), a site is classified as susceptible if N1,60,CS does not surpass the median bootstrap
threshold and if CSR7.5,1 meets or exceeds the paired threshold. The criterion reflects the
physical condition under which liquefaction can only occur when soil resistance is low and
cyclic loading is sufficiently high [13].

The dual-threshold rule is most suitable for initial risk screening and design checks at
sites characterized by level ground, free field conditions where SPT governs the investiga-
tion scope and soils are clean-to-silty sands. It is reliably used within the Core/Support
coverage of the compiled database (Figure 3), with recommended input ranges of N1,60,CS

roughly 5–35 (typically 10–30) and CSR7.5,1 approximately 0.08–0.35, assuming the stan-
dard corrections applied to form N1,60,CS and CSR7.5,1 are appropriate. Situations that often
require additional predictors or alternative/auxiliary models include pronounced ground
slope or static shear bias; thin interbedded liquefiable layers; excellent soils with high
plasticity or fines content outside clean-sand adjustments; gravelly, cemented, or crushable
soils; partially saturated or ground-improved deposits; and cases where cyclic mobility
is a key concern. In such cases, incorporating variables such as fines content, vertical
effective stress, and magnitude scaling factors, or employing CPT- or Vs-based probabilistic
procedures alongside this rule, is recommended.

Validation utilized a separate 20% hold-out test set (n = 42) that was entirely indepen-
dent of all training, calibration, and threshold-setting steps [39]. Observation weights based
on data quality classes (A = 1.0, B = 0.70, C = 0.40) were maintained to ensure consistency
in penalizing misclassifications. Performance was assessed using a weighted confusion
matrix, from which accuracy, precision, recall, and the F1 score were calculated [60]. A
sensitivity analysis then evaluated the robustness of the rule to different weight assump-
tions by uniformly rescaling the weights for Classes B and C, while keeping the thresholds
fixed. This analysis demonstrated how changing the importance of lower-quality records
influences predictive performance without altering the current decision criteria.

4. Results
4.1. Model Discrimination and Calibration

The evaluative metrics for the RF models on the test set of 42 cases are summarized
in Table 3. The uncalibrated RF model achieved an AUC of 0.96, demonstrating strong
discriminative ability, along with an accuracy of 0.92, an F1 score of 0.93, and a Brier score of
0.10, with an optimal classification threshold of 0.79. In comparison, the isotonic-calibrated
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version had a slightly lower AUC of 0.95, an accuracy of 0.91, an F1 score of 0.92, and
an improved Brier score of 0.09, indicating better calibration, at an optimal threshold of
0.77. These results highlight the models’ strong performance in distinguishing between
liquefaction and non-liquefaction cases, with the calibrated model providing marginally
better probability estimates, as indicated by the lower Brier score.

Table 3. Performance of RF models on test set (n = 42).

Model AUC Accuracy F1 Brier Optimal Threshold

RF (uncalibrated) 0.96 0.92 0.93 0.10 0.79
RF (isotonic-calibrated) 0.95 0.91 0.92 0.09 0.77

Figure 4 shows the receiver operating characteristic (ROC) curves for both models.
Panel (a) presents the uncalibrated model’s ROC curve, which closely approaches the
top-left corner with an AUC of 0.96, greatly surpassing the chance diagonal (AUC = 0.50).
Panel (b) displays the isotonic-calibrated model’s ROC curve, which maintains high dis-
criminative ability with an AUC of 0.95, again exceeding the baseline, confirming that
calibration adjustments do not compromise overall classification performance.

Figure 4. ROC curves: (a) uncalibrated, (b) isotonic-calibrated.

The calibration quality of the isotonic-calibrated RF model is further examined in
Figure 5, which presents a reliability diagram [61] plotting the observed fraction of positive
outcomes against the mean predicted probability of a positive outcome. The blue line
representing the isotonic-calibrated predictions demonstrates reasonable alignment with
the ideal red dashed line (y = x), particularly in the mid-to-high probability ranges. How-
ever, minor deviations occur at lower probabilities. This visual assessment confirms the
model’s well-calibrated probabilistic outputs, where predicted probabilities closely align
with empirical frequencies, thereby enhancing its reliability for risk-based decision-making
in liquefaction assessments.
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Figure 5. Calibration curve for the isotonic-calibrated RF model.

4.2. Feature Importance

Feature importance in the isotonic-calibrated RF model was assessed using the Gini
impurity metric [62], which evaluates each predictor’s contribution to the overall decision
process by measuring the reduction in node impurity across all trees. As shown in Figure 6,
N1,60,CS appears to be the most influential variable, with a Gini importance of 0.515. Mean-
while, CSR7.5,1 is close behind at 0.485. This distribution highlights the similar but slightly
different roles of in situ soil resistance and seismic demand in distinguishing liquefaction
outcomes, consistent with established geotechnical principles, where penetration resistance
often indicates susceptibility under specific loading conditions [63].

 
Figure 6. Predictor importances from the calibrated RF.

4.3. ALE and PDP Behavior

To clarify how the calibrated RF model responds to individual predictors, PDPs and
ALEs were created, providing insights into the marginal and localized influences of N1,60,CS

and CSR7.5,1 on Pliq. Figure 7 compares the calibrated PDP (in red) and centered ALE (in
blue) for each variable. For N1,60,CS, both metrics show an apparent nonlinear decrease
in predicted probability as blow counts increase, with a steep drop from about 1.0 at
low values (below 10) to near zero beyond 30, emphasizing the key role of penetration
resistance in reducing liquefaction risk. The ALE curve, being centered, highlights de-
viations from the average effect, revealing more substantial negative impacts at middle
values around 15–25. Conversely, for CSR7.5,1, the plots show a sharp rise in probability
with increasing stress ratio, transitioning from minimal risk below 0.1 to almost certain
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liquefaction above 0.3, with the ALE indicating positive deviations in the 0.15–0.25 range,
where seismic demands heavily interact with soil properties. The close agreement be-
tween the PDPs and ALEs suggests few higher-order interactions, confirming the model’s
interpretability in this two-variable context [54,57].

Figure 7. Calibrated partial-dependence and centered ALE for N1,60,CS and CSR7.5,1.

Extending the analysis to joint effects, Figure 8 displays the two-dimensional ALE
surface, illustrating the combined influence of N1,60,CS and CSR7.5,1 on Pliq through a color
gradient from blue (lower odds) to red (higher odds). Regions with high liquefaction
potential are visible where N1,60,CS (<20) is low and CSR7.5,1 (>0.15) is high, with contour
lines marking transitional zones where small changes in either variable can significantly
affect outcomes. Sparse regions, such as those with extremely high N1,60,CS or very low
CSR7.5,1, should be approached with caution in extrapolation, as the model relies more
on interpolation in these areas and may be less accurate. These sparsely populated cor-
ners coincide with the Extrapolation zone in the Coverage Extrapolation Map (Figure 3),
which explains the visually misleading orange/yellow (high N1,60,CS, low CSR7.5,1) and
green/blue (very high CSR7.5,1, very low N1,60,CS) patches on the ALE surface.

Figure 8. ALE surface for N1,60,CS and CSR75,1; warm colors indicate higher liquefaction odds.

4.4. Derived Thresholds

Threshold values for Pliq were derived through bootstrapping to quantify uncertainty
in the calibrated RF model’s predictions, focusing on univariate boundaries for N1,60,CS

and CSR7.5,1. This method involved resampling the dataset with replacement to generate
multiple iterations, from which median thresholds and 90% CIs were calculated for target
probabilities ranging from 0.05 to 0.95 [59]. For N1,60,CS, the median thresholds decrease
steadily as Pliq increases, reflecting the inverse relationship between penetration resistance
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and liquefaction susceptibility: at Pliq = 0.05, the median is 26.02 (90% CI: 9.95–47.63),
dropping to 15.71 (90% CI: 7.44–20.51) at Pliq = 0.95 (see Table 4). The broader intervals at
lower probabilities highlight greater variability in defining safe states, where limited data
may lead to increased uncertainty in estimation.

Table 4. Bootstrapped dual thresholds (median and 90% CI).

Variable Target Pliq Median 90% CI Lower 90% CI Upper

N1,60,CS

0.05 26.02 9.95 47.63
0.20 24.22 8.68 26.81
0.50 21.35 8.68 26.09
0.80 18.09 7.44 22.98
0.95 15.71 7.44 20.51

CSR7.5,1

0.05 0.21 0.05 0.48
0.20 0.22 0.08 0.48
0.50 0.25 0.09 0.49
0.80 0.26 0.11 0.49
0.95 0.28 0.14 0.49

In contrast, for CSR7.5,1, the median thresholds show a modest increase in Pliq,
indicating a direct relationship between seismic demand and risk, starting at 0.21
(90% CI: 0.05–0.48) for Pliq = 0.05 and rising to 0.28 (90% CI: 0.14–0.49) for Pliq = 0.95.
The relatively stable upper bound near 0.49 across levels suggests a saturation effect at high
demands. Meanwhile, the lower bound expands at higher probabilities, highlighting the
need for caution in high-risk assessments. Plotting these thresholds on the CEM (Figure 3)
shows that even the extreme-probability points remain within data-supported regions, rein-
forcing their practical reliability. These dual thresholds provide practical, probability-based
decision rules, enabling engineers to adjust conservatism according to acceptable risk levels
while considering inherent model and data uncertainties.

4.5. Performance of the Simple Dual Rule

The effectiveness of the proposed dual-threshold rule was assessed on the test set
using confusion matrices at selected Pliq thresholds (Pliq = 0.05, 0.20, 0.50, 0.80, 0.95),
measuring the agreement between predicted and observed outcomes. Table 5 shows the
average counts for actual non-liquefied cases correctly identified as non-liquefied, false
positives (non-liquefied predicted as liquefied), false negatives (liquefied predicted as
non-liquefied), and true positives (liquefied correctly detected). At lower thresholds,
such as Pliq = 0.05, the rule demonstrates a balanced error distribution, with 12.5 true
non-liquefied and 9.1 accurate liquefied classifications, although some misclassifications
occur (1.4 false positives and 8.5 false negatives). As Pliq increases, false positives drop to
zero, improving specificity, while false negatives increase, indicating a conservative bias
that emphasizes avoiding liquefaction underprediction at the cost of recall. This change
highlights the rule’s flexibility for risk-averse situations, where higher thresholds favor
non-liquefaction predictions in uncertain cases.

Table 5. Confusion matrices for different probability levels.

(Pliq)
True Non-Liquefied (Pred.

Non-Liq.) True Non-Liquefied (Pred. Liq.) True Liquefied (Pred. Non-Liq.) True Liquefied (Pred. Liq.)

0.05 12.5 1.4 8.5 9.1
0.20 13.9 0 9.2 8.4
0.50 13.9 0 12.7 4.9
0.80 13.9 0 12.7 4.9
0.95 13.9 0 13.4 4.2
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Complementary performance metrics, summarized in Table 6, further clarify the
behavior of the dual rule, including accuracy, precision, recall, and F1-score. Precision
reaches 1 for P ≥ 0.20, indicating perfect avoidance of false positives and high confidence
in optimistic predictions, though at the expense of decreasing recall (from 0.52 at P = 0.05
to 0.24 at P = 0.95), which measures the proportion of actual liquefied cases correctly
identified. Accuracy peaks at 0.71 for Pliq = 0.20 before declining to 0.57 at higher thresholds.
Meanwhile, the F1-score, which balances precision and recall, is maximized at 0.65 for lower
Pliq values, suggesting optimal usefulness in scenarios tolerant of moderate conservatism.
These metrics confirm the rule’s practical value, especially for initial screenings where
precision is crucial, while also highlighting the trade-offs involved in threshold selection
for detailed geotechnical decision-making.

Table 6. Performance metrics for the simple dual rule.

P Accuracy Precision Recall F1-Score

0.05 0.69 0.87 0.52 0.65
0.20 0.71 1.00 0.48 0.65
0.50 0.60 1.00 0.28 0.44
0.80 0.60 1.00 0.28 0.44
0.95 0.57 1.00 0.24 0.39

5. Discussion
5.1. Comparison with Reliability-Based SPT Curves of Cetin et al. (2018)

To put the proposed dual-threshold rule into context, it is compared with the
reliability-based SPT correlations of Cetin et al. (2018) [64]. Their curves, derived using
maximum-likelihood estimation on the same case history database, provide Pliq ranging
from 5% to 95% and connect the median contour (Pliq = 50%) to an approximate FS of
approximately 1.0.

Figure 9 overlays the proposed median thresholds (black markers) on the redrawn
contours from Cetin et al. [64]. A visual inspection shows a close agreement in the mid-
probability range. For Pliq = 50%, the point at N1,60,CS = 21.35 and CSR7.5,1 = 0.25 sits close
to the median contour (CSR7.5,1 ≈ 0.22). The +14% CSR7.5,1 difference yields an implied FS
of 0.94, comfortably within the standard design parameters’ tolerance.

Table 7 provides a numerical comparison. Implied safety factors were calculated by
deriving the cyclic resistance ratio (CRR) from Cetin et al.’s Pliq = 50% (FS = 1.0) curve
using their Equations (10) and (11) from Cetin et al. (2018) [37] under standard condi-
tions (FC = 5%, Mw = 7.5, σv

′ = 1 atm) at each median N1,60,CS, then dividing that CRR
by the corresponding CSR7.5,1 median from the current thresholds (FS = CRR/CSR) (an
annotated Word document, Supplementary Document S1, details every step of the implied
FS calculation). This simple ratio links the probabilistic CSR7.5,1 rule to the deterministic
FS scale commonly used in design. At the low-risk end (Pliq = 5%), the CSR7.5,1 value
aligns with Cetin’s visual estimate, resulting in an implied FS of 1.67 compared to approx-
imately 1.5, making it slightly more conservative. At Pliq = 20%, the framework remains
mildly conservative (−4% ∆CSR7.5,1; implied FS = 1.37). For higher-risk levels, the trend
reverses: the dual-threshold rule requires a larger CSR7.5,1 value to indicate liquefaction
(e.g., +24% ∆CSR7.5,1 at Pliq = 80%), leading to implied FS values between 0.68 and 0.52,
slightly below Cetin’s estimated range of approximately 0.8–0.7.
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Figure 9. Redrawn probabilistic seismic soil liquefaction triggering curves for clean sands
(FC = 5%, Mw = 7.5, σv

′ = 1 atm), illustrating CSR7.5,1 vs. N1,60,CS for liquefaction probabilities
Pliq = 5%, 20%, 50%, 80%, and 95% (adapted from Cetin et al., 2018 [37], Soil Dynamics and Earth-
quake Engineering, 115, 698–709).

Table 7. Comparison of proposed thresholds with Cetin et al. (2018) [37].

Pliq
Proposed N1,60,CS

Median 1
Proposed CSR7.5,1

Median 1

Cetin et al. (2018) [37]
CSR7.5,1 at Proposed

N1,60,CS
2

Cetin et al.
(2018) [37]

FS

∆CSR7.5,1
(%)

Implied FS
(Proposed
Model) 3,4

0.05 26.02 0.21 ≈0.21 1.5 0 1.67
0.20 24.22 0.22 ≈0.23 1.2 −4 1.37
0.50 21.35 0.25 ≈0.22 1.0 +14 0.94
0.80 18.09 0.26 ≈0.21 0.8 +24 0.68
0.95 15.71 0.28 ≈0.20 0.7 +40 0.52

1 Proposed threshold (Table 4). 2 Visual estimates from Figure 4 in Cetin et al. (2018) [37]. 3 FS = CRR
from Cetin at Pliq = 50% (FS = 1) ÷ proposed CSR7.5,1 (using Cetin Equation (11); θ-coefficients from
Table 7 Cetin et al. (2018) [37]; FC = 5%, Mw = 7.5, σv

′ = 1 atm). 4 Implied FS (FS > 1 = more conservative,
FS < 1 = less conservative). Detailed calculations are provided in Supplementary Document S1.

These differences are modest and arise from methodological choices. Cetin et al. em-
ployed a parametric regression with explicit correction factors. In contrast, the present study
uses a non-parametric RF that captures nonlinear interactions and provides a bootstrap-
based CI.

5.2. Influence of Quality Weighting

The quality-weighted sampling scheme, which assigns values of 1.0, 0.70, and 0.40 to
Classes A, B, and C, respectively, ensures that higher-quality case histories have greater
influence during model training and threshold setting, thereby improving the reliability
of the proposed dual-threshold rule. To assess how these weights affect performance, a
sensitivity analysis was performed by uniformly rescaling the weights for Classes B and
C while maintaining the fixed thresholds from Table 4. This approach simulates typical
engineering situations, such as using datasets with varying levels of completeness from
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older studies. Three weighting scenarios were tested: full uniform weighting (1.0 for all
classes), moderate down-weighting (0.7 for B and C), and strict down-weighting (0.4 for B
and C). The results were evaluated across five probability levels using accuracy and the
F1-score on the test set.

Figure 10 illustrates how the dual-threshold rule performs with different weight adjust-
ments, showing accuracy (blue bars) and the F1-score (red bars) for each probability level
across various schemes. When the weights are equal (1.0), accuracy reaches a maximum of
0.71 at Pliq = 0.20 and decreases to 0.57 at Pliq = 0.95, while the F1 scores exhibit a similar
trend, falling from 0.65 to 0.39. This reflects a balanced but diminishing effectiveness as
thresholds become less conservative. Slightly lower values occur with moderate down-
weighting (0.7), where accuracy ranges from 0.67 at Pliq = 0.20 to 0.55 at Pliq = 0.95, and
F1 scores from 0.60 to 0.35. This indicates minimal performance loss and emphasizes the
scheme’s robustness. Strict down-weighting (0.4) results in further declines, with accuracy
decreasing to 0.60 at Pliq = 0.20 and 0.50 at Pliq = 0.95. Meanwhile, F1 drops from 0.50 to
0.29, as lower-quality cases contribute less and may introduce more noise in sparse areas.

Figure 10. Sensitivity of dual-threshold rule performance to quality weight adjustments.

These variations demonstrate that the quality weighting enhances model stability
without significantly compromising performance, as fluctuations remain below 10% across
schemes. In practice, this flexibility allows engineers to adjust the rule based on dataset
quality, applying stricter weighting for initial evaluations at data-scarce sites while preserv-
ing the usefulness of core thresholds in risk-informed seismic foundation design. These
findings align with previous probabilistic analyses where lower-quality cases are penalized
by increased uncertainty, resulting in slight estimate shifts but greater stability [13,14,36].

5.3. Interpretation of Model Behavior and Key Insights

The calibrated RF model exhibits interpretable behavior consistent with fundamental
geotechnical principles, while also revealing subtle patterns through advanced visualization
tools. Feature importance analysis using the Gini impurity metric (Figure 6) indicates that
N1,60,CS is the most important predictor, with a value of 0.515, slightly exceeding CSR7.5,1 at
0.485. Such a distribution highlights the crucial role of in situ soil resistance in mitigating
liquefaction risk, as higher penetration resistance indicates denser or stiffer soils that are
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less prone to pore pressure buildup [65]. Conversely, CSR7.5,1 reflects the seismic demand
that can trigger liquefaction under vulnerable conditions [13]. The similar contributions
highlight the interconnected relationship between resistance and demand, aligning with
empirical observations that liquefaction only occurs when low resistance coincides with
sufficient cyclic loading [64,66].

The PDPs and ALEs further clarify these dynamics (Figure 7). For N1,60,CS, both the
PDP and ALE profiles show a nonlinear decrease in Pliq, dropping sharply from nearly
1.0 below 10 to almost 0 above 30, indicating a threshold-like transition around 15–25. It
follows that small increases in resistance can result in substantial reductions in risk. The
centered ALEs highlight local variations, showing strong adverse effects in this mid-range,
which indicates that engineering interventions, such as ground improvement, could be
most effective here. In contrast, CSR7.5,1 displays a sharp sigmoid-shaped increase, with
the probability rising from minimal levels below 0.1 to nearly certain above 0.3, and ALE
positive deviations peaking at 0.15–0.25, pointing to a sensitive zone where site-specific
seismic analyses are essential.

Joint effects shown on the two-dimensional ALE surface (Figure 8) reveal high-risk
areas (warm colors) at low N1,60,CS (<20), and high CSR7.5,1 (>0.15). Contour lines highlight
abrupt changes, underscoring the logic of the dual-threshold rule: susceptibility requires
both weak resistance and high demand. The data density plot (Figure 3) confirms model
reliability in densely sampled regions (N1,60,CS = 10–30, CSR7.5,1 = 0.1–0.3), where the
analysis is most reliable, but cautions against extrapolating into sparse areas, such as very
high N1,60,CS or low CSR7.5,1, due to limited data. Those sparse corners align with the
Extrapolation zone on the CEM (Figure 3), highlighting why predictions in this area require
extra caution.

Key insights include the model’s ability to surpass black box limitations through PDPs
and ALEs, providing transparent nonlinear insights that foster trust in ML for geotechnics.
The bootstrapped thresholds (Table 4) effectively account for uncertainty, with the wider
CIs at the extremes reflecting data sparsity. The dual rule’s performance (Tables 5 and 6)
shows practical trade-offs, such as high precision at conservative levels (Pliq ≥ 0.20), which
is ideal for avoiding false alarms in foundation design. Overall, these elements position the
framework as a link between data-driven prediction and engineering judgment, providing
scalable risk assessment for building resilience in seismic regions.

5.4. Practical Implications for Engineering Practice

The proposed dual-threshold framework provides significant practical value for
geotechnical and structural engineers involved in seismic building design. It provides a
streamlined, risk-calibrated tool that easily integrates into performance-based workflows.
By simplifying complex RF predictions into straightforward cutoff pairs for N1,60,CS and
CSR7.5,1 across five probability levels (Table 4), the rule enables rapid preliminary screen-
ings: a site is considered susceptible if resistance drops below the N1,60,CS threshold and
demand exceeds the CSR7.5,1 threshold. Such streamlining enables rapid identification of
liquefaction hazards without the need for extensive probabilistic calculations. The simplic-
ity addresses a significant obstacle in adopting ML models, as highlighted in the literature,
where black box outputs often discourage routine use [67]. Engineers can select thresholds
based on project importance; for example, Pliq = 5% (implied FS ≈ 1.67) for critical facilities,
such as hospitals, ensuring conservative margins in line with codes, such as that of the
American Society of Civil Engineers (ASCE 7), which require FS > 1.2–1.5. Alternatively,
Pliq = 20% (FS ≈ 1.37) can be used for ordinary structures to strike a balance between cost
and safety. When the simplified assumptions for rd, site amplification, or MSF are question-
able (for example, in deep soft basins or where there are significant impedance contrasts),
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CSR should be obtained from site-specific 1D/2D response or effective-stress dynamic anal-
yses and then normalized to CSR7.5,1 before applying the screening rule. Recommended
use cases include initial screening and design reviews for standard and critical building
facilities where SPT data is the primary source and where site conditions fall within the
Core/Support domain described in Section 3.7. Projects requiring higher accuracy or in-
volving complex geology, such as essential facilities, layered or sloped sites, unusual grain
sizes or plasticity, or strong static shear, should combine the rule with expanded feature
sets or CPT-/Vs-based probabilistic models and, when appropriate, implement site-specific
effective-stress analyses. For projects located in basins or depositional settings that are
underrepresented in the training catalog, the screening results should be confirmed with
an external dataset from a recent regional event (e.g., 2023 Turkey–Syria) before making
final design decisions. Regional transfer can be assessed by freezing the learner and re-
computing the isotonic probability mapping and bootstrap thresholds with locally sourced
cases. If such calibration is not performed, outcomes should be considered screening-level,
and reporting the geologic context provides traceability. For daily use, Figure 11 offers a
step-by-step flowchart outlining the screening process: Pliq selection, input preparation,
CEM coverage check, dual-threshold test, confidence-band check, out-of-domain actions,
and documentation.

Figure 11. Dual-threshold decision flow chart for practice (SPT-CSR screening).

The dual thresholds are calibrated for level ground, free field sites; using them
on sloping ground or near free faces falls outside the calibration scope and should be
considered screening-level only. For such terrains, a recommended extension includes:
(i) incorporating a static-shear descriptor (such as α = τs/σv

′ or slope angle) and adjust-
ing cyclic demand using a slope or static-bias factor in line with established procedures;
(ii) reevaluating triggering with a multivariate or CPT-/Vs-assisted model; and (iii) as-
sessing consequences through lateral spreading or displacement models and, if necessary,
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site-specific effective-stress dynamic analyses. This approach offers slope-aware checks
while maintaining the dual-parameter rule as the initial screening method.

In foundation design, the framework facilitates informed decisions on mitigation
strategies, such as ground improvement or deep foundations, by quantifying uncer-
tainty with bootstrapped CIs. For example, wider intervals at low probabilities (e.g.,
CSR7.5,1 CI = 0.05–0.48 at Pliq = 0.05) emphasize the need for site-specific investigations in
data-sparse areas, encouraging cautious extrapolation. Performance metrics (Table 6) also
show their usefulness, with perfect precision (1.0) at Pliq ≥ 20, ensuring a low number
of false positives, which is essential for avoiding unnecessary overdesign. Additionally,
acceptable F1 scores (up to 0.65) indicate a balanced recall in risk-averse situations. Compar-
isons with Cetin et al. (2018) [37] (Figure 9 and Table 7) suggest that the proposed thresholds
yield FS margins comparable at low probabilities, thereby increasing conservatism where
building resilience is vital.

Broader implications include better integration with BIM platforms, where the rule’s
parameters could be automated for scenario analyses and adapted to changing datasets. By
emphasizing quality weighting and interpretability [29] (e.g., ALE surfaces in Figure 8),
the approach builds trust among practitioners, thereby reducing reliance on subjective
judgments and promoting fair seismic risk management in vulnerable regions, such as
those affected by recent events in Turkey and Syria (2023). Ultimately, this framework
enables engineers to tailor liquefaction assessments to specific importance levels, thereby
optimizing safety and efficiency in the built environment. To demonstrate practical use,
Table 8 features a quick, step-by-step screening example at Pliq = 20% using the median
thresholds from Table 4. The near-threshold case illustrates how the dual rule can identify
susceptibility when a legacy boundary would not, leading to simple confirmatory checks
when decisions are sensitive to slight changes.

Table 8. Quick screening example at Pliq = 20% (ordinary importance; level ground, free field).

Step What is Checked Numbers Outcome

1 Target risk level Pliq = 20% -
2 Corrected inputs N1,60,CS = 24.0 blows/ft; CSR7.5,1 = 0.22 -
3 Proposed thresholds (Table 4, medians) Nthr = 24.22; CSR7.5,1,thr = 0.22 -
4 Resistance check Is N1,60,CS ≤ Nthr? → 24.0 ≤ 24.22 Yes
5 Demand check Is CSR7.5,1 ≥ CSR7.5,1,thr? → 0.22 ≥ 0.22 Yes
6 Dual-rule result Both conditions satisfied Susceptible

7 Legacy boundary at N ≈ 24 (Table 7) CSRref ≈ 0.23; compare 0.22 < 0.23 Not
susceptible

8 Takeaway Near-threshold divergence; prompts confirmatory steps (e.g.,
CPT/Vs profiling, site-specific response analysis) -

Notes: Values are illustrative (synthetic), anchored to Table 4 (thresholds) and Table 7 (legacy comparison), and lie
within reported 90% confidence bands. Applicability: level ground, free field, clean-to-silty sand sites.

5.5. Limitations and Future Work

While the proposed dual-threshold framework advances practical liquefaction as-
sessment through a calibrated RF model, several limitations should be acknowledged.
First, relying on only two predictors: N1,60,CS and CSR7.5,1, simplifies the approach for
usability but omits the explicit inclusion of additional factors such as varying fines content,
vertical effective stress beyond normalization, or site-specific ground motion character-
istics. This may reduce accuracy in complex soil profiles. The dataset, derived from
Cetin et al. (2018) [37], carries inherent biases, including the overrepresentation of a few
well-documented earthquakes and the exclusion of marginal cases, which could limit its
applicability to underrepresented regions or recent events (e.g., the 2023 Turkey–Syria
earthquakes). Validation on a relatively small test set (n = 42) provides robust metrics but
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could benefit from larger, independent datasets to verify performance across diverse seis-
mic environments. Although the case histories are geographically broad and geologically
diverse, some regions (such as parts of South America and Africa) and very coarse-grained
or gravelly deposits are less represented in the catalog. Actionable use is limited to the
Coverage Extrapolation Map Core/Support zones (Figure 3) for level ground, free field, and
clean-to-silty sand sites. Cases within practical measurement tolerance of a threshold are
for screening only and should be treated as provisional. Confidence-interval endpoints that
lie outside Core/Support are non-actionable and are reported only to convey uncertainty. A
clear validation pathway is recommended: (i) compile an independent set of SPT-based con-
trols from recent events, especially the 2023 Turkey–Syria sequence, for which liquefaction
inventories from remote sensing are available; (ii) apply the frozen dual-threshold rule to
this set without refitting; (iii) report out-of-sample discrimination (AUC), calibration (Brier
score/reliability), and threshold transferability; and (iv) update isotonic calibration and
confidence intervals if a distribution shift is detected. This process limits extrapolation error
and supports use in regions not fully covered by the current catalog. The lack of new field
cases is a limitation; therefore, the released code and workflow are designed to be retrained
to update thresholds, and region-specific SPT databases become accessible. Accuracy may
decrease if the simplified demand formulation (choice of rd, MSF, or amplification) does not
match site conditions; in such cases, CSR should be computed from site-specific response
or dynamic analyses as the input to the normalization step before applying the thresholds.

Beyond scope choices, several practical failure modes can affect screening reliability.
Isotonic calibration is non-parametric and tied to the training distribution; under dataset
shift, probability reliability may decline even if discrimination remains similar. Near
the decision boundary, minor uncertainties in N1,60,CS corrections (e.g., CE, CN, fines
adjustments) or in mapping site CSR to the reference CSR7.5,1 (choice of rd, duration/MSF,
amplification) can alter outcomes, so borderline results should be viewed as provisional.
The two-feature model omits covariates such as stratigraphy (thin/interbedded layers),
static shear bias, groundwater fluctuations, and effective-stress details; these factors can
influence risk in ways not captured by the rule. Thresholds may shift slightly if case-quality
labels or weights differ from those assumed. Finally, selecting a Pliq level that does not
align with facility importance can lead to inconsistent safety margins unless documented
in the design record.

Future work could explore these aspects by expanding the model to include multivari-
ate inputs, such as CPT or shear-wave velocity (Vs) data, and utilizing ensemble methods
or hybrid physics ML approaches for broader application. A pragmatic two-stage approach
is recommended: Stage 1 uses the fixed dual-parameter screening rule; Stage 2 enhances
this with additional predictors (such as fines content, σv

′, Mw, qc, or Vs) using a stacked
or ensemble learner with isotonic recalibration. Afterward, thresholds and confidence
intervals are re-estimated through bootstrap. Cross-validation should be stratified by event
or region to ensure transferability, and CPT- and Vs-based probabilistic methods can act
as both parallel validators and supplementary tool inputs. Incorporating recent global
case studies would improve the database’s diversity, possibly refining thresholds through
transfer learning. Extending the framework to handle non-level terrains or coupling it
with finite-element simulations could enable comprehensive building analyses, including
dynamic response and mitigation strategies. Investigating adaptive weighting through
Bayesian updates could further strengthen robustness against data uncertainties. Following
these steps and after assessing software packaging and user workflows, the framework
will be well-prepared for future integration into digital design environments (e.g., BIM).
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6. Conclusions
The research presents a risk-informed dual-threshold framework for SPT-based soil

liquefaction assessment, using a calibrated RF model to offer practical, probability-based
criteria tailored for seismic building design. By analyzing 208 field case histories from
Cetin et al. (2018) [37] with quality-based weighting, the model establishes paired thresh-
olds for N1,60,CS and CSR7.5,1 at Pliq of 5%, 20%, 50%, 80%, and 95%, including 90% CI
derived from bootstrapping (Table 4). The resulting screening rule, which classifies sites
as susceptible if resistance drops below the N1,60,CS threshold and demand exceeds the
CSR7.5,1 threshold, shows strong performance, with precision reaching 1.0 at conservative
levels (P ≥ 0.20) and F1 scores up to 0.65 (Table 6), indicating reliability for preliminary
assessments. Interpretability tools like PDPs and ALEs (Figures 7 and 8) reveal nonlinear
behaviors, such as sharp risk transitions around N1,60,CS = 15–25 and CSR7.5,1 = 0.15–0.25,
providing insights beyond traditional deterministic boundaries.

Comparisons with Cetin et al. (2018) [37] (Figure 9 and Table 7) confirm alignment at
moderate probabilities, while highlighting the proposed model’s flexibility, with implied
FS margins exceeding benchmarks at low Pliq (e.g., 1.67 vs. approximately 1.5 at 5%),
providing greater conservatism in critical applications. Sensitivity to weighting (Figure 10)
underscores robustness, with minimal performance loss under different schemes. These
improvements address key gaps in ML adoption and offer an accessible tool for risk-
adjusted foundation design that enhances safety and efficiency. Future extensions could
include multivariable inputs, further advancing resilient infrastructure in seismic regions.

Applicability is limited to level ground, free field, and clean-to-silty sand sites within
the Core/Support region of the Coverage Extrapolation Map. Cases in Extrapolation are
screening-level only and require site-specific analyses. The worked screening example
and decision flow (Section 5.4, Figure 11; Table 8) demonstrate how risk-graded SPT-CSR
thresholds can alter initial decisions compared to legacy criteria and trigger confirma-
tory checks near thresholds. For regional deployment, the trained model may be frozen
while recalculating the isotonic probability map and bootstrap thresholds with local cases.
Slope/static-shear and SSI/lateral spreading extensions remain future priorities.
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