# Framework for BIM-Based Simulation of Construction Operations Implemented in a Game Engine

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Background

#### 2.1. BIM-Based Simulation

#### 2.2. Simulation Model Reuse

#### 2.3. Enhancement of Simulation Visualisation through Animation

## 3. Methodology

#### 3.1. Framework Design

#### 3.2. Simulation-Based Animations

## 4. Proposed Framework

#### 4.1. Environment Module

#### 4.2. User Input Module

#### 4.3. Pre-Processing Module

#### 4.4. Simulation Module

#### 4.5. Visualisation Module

## 5. Implementation

## 6. Case Study

#### 6.1. Project Description

#### 6.2. Generic Simulation Model

#### 6.3. Constructable Element

#### 6.4. BIM Model

#### 6.5. Simulation Model

#### 6.6. Case Study Results

## 7. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- AbouRizk, S.M.; Halpin, D.; Mohamed, Y.; Hermann, U. Research in modeling and simulation for improving construction engineering operations. J. Constr. Eng. Manag.
**2011**, 137, 843–852. [Google Scholar] [CrossRef] - Hamdan, S.B.; Barkokebas, B.; Manrique, J.D.; Al-Hussein, M. A BIM-based simulation model for inventory management in panelized construction. In Proceedings of the 32nd International Symposium on Automation and Robotics in Construction and Mining (ISARC 2015), Oulu, Finland, 15–18 June 2015; IAARC Publications: Oulu, Finland, 2015; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- AbouRizk, S.M. Role of simulation in construction engineering and management. J. Constr. Eng. Manag.
**2010**, 136, 1140–1153. [Google Scholar] [CrossRef] - Law, A.M.; Kelton, W.D. Simulation Modeling and Analysis; McGraw-Hill: New York, NY, USA, 2000; Volume 3. [Google Scholar]
- Lee, D.E.; Yi, C.Y.; Lim, T.K.; Arditi, D. Integrated simulation system for construction operation and project scheduling. J. Comput. Civ. Eng.
**2010**, 24, 557–569. [Google Scholar] [CrossRef] - Ebrahimy, Y.; AbouRizk, S.M.; Fernando, S.; Mohamed, Y. Simulation modeling and sensitivity analysis of a tunneling construction project’s supply chain. Eng. Constr. Archit. Manag.
**2011**, 18, 462–480. [Google Scholar] [CrossRef] - Werner, M.; AbouRizk, S.M. Simulation case study: Modelling distinct breakdown events for a tunnel boring machine excavation. In Proceedings of the 2015 Winter Simulation Conference (WSC), Huntington Beach, CA, USA, 6–9 December 2015; pp. 3234–3245. [Google Scholar] [CrossRef]
- Osorio-Sandoval, C.A.; Zaragoza-Grifé, J.N.; Corona-Suárez, G.A.; González-Fajardo, J.A. Discrete Event Simulation Analysis of the Effect of Labor Absenteeism on the Duration of Construction Activities in Housing Projects. Int. J. Eng. Res. Appl.
**2016**, 6, 46–55. [Google Scholar] - Seo, J.; Lee, S.; Seo, J. Simulation-based assessment of workers’ muscle fatigue and its impact on construction operations. J. Constr. Eng. Manag.
**2016**, 142, 04016063. [Google Scholar] [CrossRef] - Larsson, R.; Rudberg, M. Impact of Weather Conditions on In Situ Concrete Wall Operations Using a Simulation-Based Approach. J. Constr. Eng. Manag.
**2019**, 145, 05019009. [Google Scholar] [CrossRef] [Green Version] - Pereira, E.; Han, S.; AbouRizk, S.M. Integrating Case-Based Reasoning and Simulation Modeling for Testing Strategies to Control Safety Performance. J. Comput. Civ. Eng.
**2018**, 32, 04018047. [Google Scholar] [CrossRef] - Baniassadi, F.; Alvanchi, A.; Mostafavi, A. A simulation-based framework for concurrent safety and productivity improvement in construction projects. Eng. Constr. Archit. Manag.
**2018**, 25, 1501–1515. [Google Scholar] [CrossRef] - Zayed, T.M.; Halpin, D. Simulation of concrete batch plant production. J. Constr. Eng. Manag.
**2001**, 127, 132–141. [Google Scholar] [CrossRef] - Zhang, C.; Zayed, T.; Hammad, A. Resource management of bridge deck rehabilitation: Jacques Cartier bridge case study. J. Constr. Eng. Manag.
**2008**, 134, 311–319. [Google Scholar] [CrossRef] - Feng, K.; Lu, W.; Chen, S.; Wang, Y. An Integrated Environment–Cost–Time Optimisation Method for Construction Contractors Considering Global Warming. Sustainability
**2018**, 10, 4207. [Google Scholar] [CrossRef] [Green Version] - Rahm, T.; Scheffer, M.; Thewes, M.; König, M.; Duhme, R. Evaluation of disturbances in mechanized tunneling using process simulation. Comput.-Aided Civ. Infrastruct. Eng.
**2016**, 31, 176–192. [Google Scholar] [CrossRef] - Lee, S.; Behzadan, A.; Kandil, A.; Mohamed, Y. Grand challenges in simulation for the architecture, engineering, construction, and facility management industries. In Computing in Civil Engineering (2013); American Society of Civil Engineers: Los Angeles, CA, USA, 2013; pp. 773–785. [Google Scholar] [CrossRef] [Green Version]
- Leite, F.; Cho, Y.; Behzadan, A.H.; Lee, S.; Choe, S.; Fang, Y.; Akhavian, R.; Hwang, S. Visualization, information modeling, and simulation: Grand challenges in the construction industry. J. Comput. Civ. Eng.
**2016**, 30, 04016035. [Google Scholar] [CrossRef] [Green Version] - Abdelmegid, M.; González, V.; Poshdar, M.; O’Sullivan, M.; Walker, C.; Ying, F. Barriers to adopting simulation modelling in construction industry. Autom. Constr.
**2020**, 111, 103046. [Google Scholar] [CrossRef] - Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Azhar, S. Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadersh. Manag. Eng.
**2011**, 11, 241–252. [Google Scholar] [CrossRef] - König, M.; Koch, C.; Habenicht, I.; Spieckermann, S. Intelligent BIM-based construction scheduling using discrete event simulation. In Proceedings of the 2012 Winter Simulation Conference (WSC), Berlin, Germany, 9–12 December 2012; pp. 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.C.; Weng, S.W.; Wang, S.H.; Chen, C.Y. Integrating building information models with construction process simulations for project scheduling support. Autom. Constr.
**2014**, 37, 68–80. [Google Scholar] [CrossRef] - Lu, W.; Olofsson, T. Building information modeling and discrete event simulation: Towards an integrated framework. Autom. Constr.
**2014**, 44, 73–83. [Google Scholar] [CrossRef] - Liu, H.; Al-Hussein, M.; Lu, M. BIM-based integrated approach for detailed construction scheduling under resource constraints. Autom. Constr.
**2015**, 53, 29–43. [Google Scholar] [CrossRef] - Chang, S.; Son, J.; Jeong, W.; Yi, J.S. BIM-integrated simulation of construction operation simulation for lean production management. In Proceedings of the 2015 Modular and Offsite Construction (MOC) Summit, Edmonton, AB, Canada, 19–21 May 2015; pp. 288–294. [Google Scholar]
- Wu, C.; Jiang, R.; Li, X. Integration of BIM and Computer Simulations in Modular Construction, A Case Study. In Proceedings of the 2016 Modular and Offsite Construction (MOC) Summit, Edmonton, AB, Canada, 29 September–1 October 2016; pp. 59–66. [Google Scholar] [CrossRef]
- Barkokebas, B.; Zhang, Y.; Ritter, C.; Al-Hussein, M. Building information modelling and simulation integration for modular construction manufacturing performance improvement. In Proceedings of the European Modeling and Simulation Symposium, Barcelona, Spain, 18–20 September 2017; pp. 409–415. [Google Scholar]
- Golzarpoor, H.; González, V.A.; O’Sullivan, M.; Shahbazpour, M.; Walker, C.G.; Poshdar, M. A non-queue-based paradigm in Discrete-Event-Simulation modelling for construction operations. Simul. Model. Pract. Theory
**2017**, 77, 49–67. [Google Scholar] [CrossRef] - Wu, I.C.; Borrmann, A.; Beißert, U.; König, M.; Rank, E. Bridge construction schedule generation with pattern-based construction methods and constraint-based simulation. Adv. Eng. Inform.
**2010**, 24, 379–388. [Google Scholar] [CrossRef] - Krantz, J.; Larsson, J.; Lu, W.; Olofsson, T. Assessing embodied energy and greenhouse gas emissions in infrastructure projects. Buildings
**2015**, 5, 1156–1170. [Google Scholar] [CrossRef] [Green Version] - Jeong, W.; Chang, S.; Son, J.; Yi, J.S. BIM-integrated construction operation simulation for just-in-time production management. Sustainability
**2016**, 8, 1106. [Google Scholar] [CrossRef] [Green Version] - Robinson, S.; Nance, R.E.; Paul, R.J.; Pidd, M.; Taylor, S.J. Simulation model reuse: Definitions, benefits and obstacles. Simul. Model. Pract. Theory
**2004**, 12, 479–494. [Google Scholar] [CrossRef] - Kasputis, S.; Ng, H.C. Composable simulations. In Proceedings of the 2000 Winter Simulation Conference, Orlando, FL, USA, 10–13 December 2000; Volume 2, pp. 1577–1584. [Google Scholar] [CrossRef]
- Anagnostou, A.; Taylor, S.J. A distributed simulation methodological framework for OR/MS applications. Simul. Model. Pract. Theory
**2017**, 70, 101–119. [Google Scholar] [CrossRef] [Green Version] - Taghaddos, H. Developing a Generic Resource Allocation Framework for Construction Simulation. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2010. [Google Scholar] [CrossRef]
- Fu, F. Design and Analysis of Complex Structures. In Design and Analysis of Tall and Complex Structures; Butterworth-Heinemann: Oxford, UK, 2018; pp. 177–211. [Google Scholar] [CrossRef]
- Lee, G.; Sacks, R.; Eastman, C.M. Specifying parametric building object behavior (BOB) for a building information modeling system. Autom. Constr.
**2006**, 15, 758–776. [Google Scholar] [CrossRef] - ALICE Technologies Inc. ALICE. Available online: https://www.alicetechnologies.com/ (accessed on 25 July 2022).
- BIM+. ALICE? Who the Heck is ALICE? 2021. Available online: https://www.bimplus.co.uk/alice-who-the-heck-is-alice/ (accessed on 25 July 2022).
- Al-Hussein, M.; Niaz, M.A.; Yu, H.; Kim, H. Integrating 3D visualization and simulation for tower crane operations on construction sites. Autom. Constr.
**2006**, 15, 554–562. [Google Scholar] [CrossRef] - RazaviAlavi, S.; AbouRizk, S. Construction site layout planning using a Simulation-Based decision support tool. Logistics
**2021**, 5, 65. [Google Scholar] [CrossRef] - Sargent, R.G. Verification and validation of simulation models. J. Simul.
**2013**, 7, 12–24. [Google Scholar] [CrossRef] [Green Version] - ElNimr, A.A.; Mohamed, Y. Application of gaming engines in simulation driven visualization of construction operations. J. Inf. Technol. Constr.
**2011**, 16, 23–38. [Google Scholar] - Kamat, V.R.; Martinez, J.C. Visualizing simulated construction operations in 3D. J. Comput. Civ. Eng.
**2001**, 15, 329–337. [Google Scholar] [CrossRef] - Kamat, V.R.; Martinez, J.C. Validating complex construction simulation models using 3D visualization. Syst. Anal. Model. Simul.
**2003**, 43, 455–467. [Google Scholar] [CrossRef] - Rekapalli, P.V.; Martinez, J.C. Discrete-event simulation-based virtual reality environments for construction operations: Technology introduction. J. Constr. Eng. Manag.
**2010**, 137, 214–224. [Google Scholar] [CrossRef] - Chen, H.M.; Huang, P.H. 3D AR-based modeling for discrete-event simulation of transport operations in construction. Autom. Constr.
**2013**, 33, 123–136. [Google Scholar] [CrossRef] - ElNimr, A.A.; Fagiar, M.; Mohamed, Y. Two-way integration of 3D visualization and discrete event simulation for modeling mobile crane movement under dynamically changing site layout. Autom. Constr.
**2016**, 68, 235–248. [Google Scholar] [CrossRef] - Osorio-Sandoval, C.A.; Tizani, W.; Koch, C. A method for discrete event simulation and building information modelling integration using a game engine. Adv. Comput. Des.
**2018**, 3, 405–418. [Google Scholar] [CrossRef] - Hevner, A.R.; March, S.T.; Park, J.; Ram, S. Design science in information systems research. MIS Q.
**2004**, 28, 75–105. [Google Scholar] [CrossRef] [Green Version] - Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D. A conceptual modeling framework for discrete event simulation using hierarchical control structures. Simul. Model. Pract. Theory
**2015**, 56, 82–96. [Google Scholar] [CrossRef] - Anderson, E.F.; McLoughlin, L.; Watson, J.; Holmes, S.; Jones, P.; Pallett, H.; Smith, B. Choosing the infrastructure for entertainment and serious computer games-a whiteroom benchmark for game engine selection. In Proceedings of the 2013 5th International Conference on Games and Virtual Worlds for Serious Applications (VS-GAMES), Poole, UK, 11–13 September 2013; pp. 1–8. [Google Scholar] [CrossRef]
- Petridis, P.; Dunwell, I.; de Freitas, S.; Panzoli, D. An Engine Selection Methodology for High Fidelity Serious Games. In Proceedings of the 2010 Second International Conference on Games and Virtual Worlds for Serious Applications, Braga, Portugal, 25–26 March 2010; pp. 27–34. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.C. Methodology for conducting discrete-event simulation studies in construction engineering and management. J. Constr. Eng. Manag.
**2009**, 136, 3–16. [Google Scholar] [CrossRef] - Akhavian, R.; Behzadan, A.H. An integrated data collection and analysis framework for remote monitoring and planning of construction operations. Adv. Eng. Inform.
**2012**, 26, 749–761. [Google Scholar] [CrossRef] - Du, J.; Zou, Z.; Shi, Y.; Zhao, D. Zero latency: Real-time synchronization of BIM data in virtual reality for collaborative decision-making. Autom. Constr.
**2018**, 85, 51–64. [Google Scholar] [CrossRef] - Unity Technologies. Unity—Manual: Unity User Manual (2019.1). 2019. Available online: https://docs.unity3d.com/2019.1/Documentation/Manual/UnityManual.html (accessed on 10 July 2020).
- Ceylan, A.; Gunal, M.M. A methodology for developing DES models: Event graphs and SharpSim. In Proceedings of the 23rd European Modeling & Simulation Symposium, Rome, Italy, 12–14 September 2011; pp. 278–282. [Google Scholar]
- Ruegg, C.; Cuda, M.; Van Gael, J. Math.Net Numerics Version 4.8.0. 2019. Available online: https://numerics.mathdotnet.com/ (accessed on 10 July 2020).
- Massey, F.J., Jr. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc.
**1951**, 46, 68–78. [Google Scholar] [CrossRef]

**Figure 7.**Class diagram of the distributed simulation component. This diagram uses standard UML notation: Hollow diamonds represent aggregation; filled diamonds represent composition; stars indicate multiplicity (1..* means that 1 or more instances of the child class are part of the parent class, * means that zero or more instances of the child class are part of the parent class).

**Figure 14.**Resources at different points in time in Scenario 2. (

**a**) Mason idle at time 14.25. (

**b**) Mason preparing mortar at time 42.57. (

**c**) Mason laying block at time 184.13.

**Figure 15.**Simulation results from the scenarios of zone 3. (

**a**) Scenario 6. (

**b**) Scenario 7. (

**c**) Scenario 8. (

**d**) Scenario 9.

Task | ID |
---|---|

Load blocks into wheelbarrow | MW-01 |

Move blocks to wall construction site | MW-02 |

Unload blocks in wall construction site | MW-03 |

Load aggregate into wheelbarrow | MW-04 |

Move aggregate to mortar prep site | MW-05 |

Unload aggregate in mortar prep site | MW-06 |

Load cement bag into wheelbarrow | MW-07 |

Move cement bag to mortar prep site | MW-08 |

Unload cement bag in mortar prep site | MW-09 |

Fill bucket with water | MW-10 |

Move water to mortar prep site | MW-11 |

Prepare mortar | MW-12 |

Fill bucket with mortar | MW-13 |

Move mortar to wall construction site | MW-14 |

Lay concrete block | MW-15 |

Next Event | Conditions |
---|---|

CU-2 | mortar volume in preparation site < 0.02 |

mortar prepared < mortar needed | |

MW-01 | blocks in wall construction site < blocks needed |

blocks in storage site > 0 | |

MW-13 | mason ready to lay blocks needs mortar |

volume of mortar in preparation site > 0 | |

MW-15 | blocks in wall construction site > 0 |

volume of mortar in preparation site > 0 |

Next Event | Conditions |
---|---|

MW-04 | fine aggregate volume in mortar preparation site < 0.16 |

MW-07 | cement bags in mortar preparation site < 1 |

MW-10 | water buckets in mortar preparation site < 2 |

MW-12 | fine aggregate volume in mortar preparation site ≥ 0.16 |

cement bags in mortar preparation site ≥ 1 | |

water buckets in mortar preparation site ≥ 2 |

ID | Tasks | Distribution | Parameters |
---|---|---|---|

D-01 | MW-01, MW-03 | Triangular | $a=0.125$, $b=0.625$, $c=0.2$ |

D-02 ∗ | MW-02, MW-05, MW-08 | Triangular | $a=0.0125$, $b=0.03$, $c=0.02$ |

D-03 | MW-04 | Triangular | $a=0.6$, $b=1.2$, $c=1.0$ |

D-04 | MW-06 | Triangular | $a=0.16$, $b=0.5$, $c=0.3$ |

D-05 | MW-07, MW-09 | Triangular | $a=0.3$, $b=0.9$, $c=0.5$ |

D-06 | MW-10, MW-13 | Deterministic | $t=0.5$ |

D-07 | MW-11 | Deterministic | $t=1.0$ |

D-08 | MW-12 | Normal | $\mu =12.562$, $\sigma =5.1949$ |

D-09 | MW-14 | Normal | $\mu =1.73463$, $\sigma =0.35884$ |

D-10 | MW-15 | Weibull | $\mathit{k}=2.01378$, $\lambda =1.27307$ |

D-11 ★ ∗ | Return | Triangular | $a=0.01$, $b=0.02$, $c=0.0125$ |

Scenario ID | Zone ID | Average Distance to Storage Site (m) | Number of Masons | Number of Helpers |
---|---|---|---|---|

1 | 4 | 670.93 | 1 | 1 |

2 | 4 | 670.93 | 1 | 2 |

3 | 4 | 670.93 | 1 | 3 |

4 | 4 | 670.93 | 1 | 4 |

5 | 4 | 670.92 | 1 | 5 |

6 | 3 | 470.93 | 1 | 1 |

7 | 3 | 470.93 | 1 | 2 |

8 | 3 | 470.93 | 1 | 3 |

9 | 3 | 470.93 | 1 | 4 |

10 | 2 | 320.93 | 1 | 1 |

11 | 2 | 320.93 | 1 | 2 |

12 | 2 | 320.93 | 1 | 3 |

13 | 1 | 120.93 | 1 | 1 |

14 | 1 | 120.93 | 1 | 2 |

Zone ID | Scenario ID | Duration (min) | Mason Waiting (min) | Helper Walking (km/day) ∗ |
---|---|---|---|---|

4 | 1 | 4256.61 | 1644.22 | 12.44 |

2 | 2519.07 | 404.74 | 9.53 | |

3 | 1947.24 | 112.40 | 8.00 | |

4 | 1804.36 | 47.87 | 7.05 | |

5 | 1711.72 | 45.45 | 5.68 | |

3 | 6 | 3349.44 | 1149.85 | 10.85 |

7 | 2133.53 | 208.81 | 7.92 | |

8 | 1777.11 | 44.67 | 6.60 | |

9 | 1657.15 | 25.71 | 4.96 | |

2 | 10 | 2581.16 | 622.17 | 8.87 |

11 | 1778.35 | 89.50 | 6.75 | |

12 | 1611.93 | 22.72 | 4.47 | |

1 | 13 | 1802.66 | 201.62 | 4.90 |

14 | 1522.13 | 24.67 | 2.49 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Osorio-Sandoval, C.A.; Tizani, W.; Pereira, E.; Ninić, J.; Koch, C.
Framework for BIM-Based Simulation of Construction Operations Implemented in a Game Engine. *Buildings* **2022**, *12*, 1199.
https://doi.org/10.3390/buildings12081199

**AMA Style**

Osorio-Sandoval CA, Tizani W, Pereira E, Ninić J, Koch C.
Framework for BIM-Based Simulation of Construction Operations Implemented in a Game Engine. *Buildings*. 2022; 12(8):1199.
https://doi.org/10.3390/buildings12081199

**Chicago/Turabian Style**

Osorio-Sandoval, Carlos A., Walid Tizani, Estacio Pereira, Jelena Ninić, and Christian Koch.
2022. "Framework for BIM-Based Simulation of Construction Operations Implemented in a Game Engine" *Buildings* 12, no. 8: 1199.
https://doi.org/10.3390/buildings12081199