# Estimating the Influences of Prior Residual Stress on the Creep Rupture Mechanism for P92 Steel

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Specimen Preparation and Creep Test

#### 2.2. Creep Damage and Crack Growth Model

_{t})

_{avg}is the fracture parameter, ΔV

_{c}is the load line displacement caused by creep deformation, and t

_{h}is the loading time. In the process of creep crack growth, the total load line displacement is mainly composed of the displacement caused by creep deformation and the displacement caused by elastic deformation. Therefore, the displacement caused by creep deformation can be written as

_{avg}is the average crack growth rate, and E′ is the effective modulus of elasticity. E′ = E/(1−v

^{2}) under the plane strain state and E′ = E under the plane stress state. According to reference [27], the fracture behavior can be defined as brittle fracture when ΔV

_{e}> ΔV

_{c}, and the fracture behavior can be defined as ductile fracture when ΔV

_{e}< ΔV

_{c}.

#### 2.3. FE Analysis Model

## 3. Results

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Skelton, R.P. Deformation, diffusion and ductility during creep—continuous void nucleation and creep-fatigue damage. Mater. High Temp.
**2017**, 34, 121–133. [Google Scholar] [CrossRef] - Auerkari, P.; Salonen, J.; Holmstrom, S.; Laukkanen, A.; Rantala, J.; Nikkarila, R. Creep damage and long term life modelling of an X20 steam line component. Eng. Fail. Anal.
**2013**, 35, 508–515. [Google Scholar] [CrossRef] - Khodamorad, S.H.; Fatmehsari, D.H.; Rezaie, H.R.; Sadeghipour, A. Analysis of ethylene cracking furnace tubes. Eng. Fail. Anal..
**2012**, 21, 1–8. [Google Scholar] [CrossRef] - Lee, K.H.; Suh, J.Y.; Hong, S.M.; Huh, J.Y.; Jung, W.S. Microstructural evolution and creep-rupture life estimation of high-Cr martensitic heat-resistant steels. Mater. Charact.
**2015**, 106, 266–272. [Google Scholar] [CrossRef] - Wang, S.; Peng, D.; Chang, L.; Hui, X. Enhanced mechanical properties induced by refined heat treatment for 9Cr–0.5Mo–1.8W martensitic heat resistant steel. Mater. Des.
**2013**, 50, 174–180. [Google Scholar] [CrossRef] - Falat, L.; Výrostkova, A.; Homolova, V.; Svoboda, M. Creep deformation and failure of E911/E911 and P92/P92 similar weld-joints. Eng. Fail. Anal.
**2009**, 16, 2114–2120. [Google Scholar] [CrossRef] - Watanabe, T.; Tabuchi, M.; Yamazaki, M.; Hongo, H.; Tanabe, T. Creep damage evaluation of 9Cr-1Mo-V-Nb steel welded joints showing type IV fracture. Int. J. Press. Vessels Pip.
**2006**, 83, 63–71. [Google Scholar] [CrossRef] - Chen, L.Y.; Wang, G.Z.; Tan, J.P.; Xuan, F.Z.; Tu, S.T. Effects of residual stress on creep damage and crack initiation in notched CT specimens of a Cr–Mo–V steel. Eng. Fract. Mech.
**2013**, 97, 80–91. [Google Scholar] [CrossRef] - Zhao, L.; Jing, H.; Xu, L.; Han, Y.; Xiu, J. Effect of residual stress on creep crack growth behavior in ASME P92 steel. Eng. Fract. Mech.
**2013**, 110, 233–248. [Google Scholar] [CrossRef] - Tezuka, H.; Sakurai, T. A trigger of Type IV damage and a new heat treatment procedure to suppress it. Microstructural investigations of long-term ex-service Cr-Mo steel pipe elbows. Int. J. Press. Vessels Pip.
**2005**, 82, 165–174. [Google Scholar] [CrossRef] - Kimura, K.; Sawada, K.; Kushima, H.; Kubo, K. Effect of stress on the creep deformation of ASME Grade P92/T92 steels. Int. J. Mater. Res.
**2008**, 99, 395–401. [Google Scholar] [CrossRef] - Dean, J.; Bradbury, A.; Aldrich-Smith, G.; Clyne, T.W. A procedure for extracting primary and secondary creep parameters from nanoindentation data. Mech. Mater.
**2013**, 65, 124–134. [Google Scholar] [CrossRef] - Sugiura, R.; Yokobori, A.T.; Sato, K.; Tabuchi, M.; Kobayashi, K.; Yatomi, M. Creep crack initiation and growth behavior in weldments of high Cr steels. Strength Fract. Complexity
**2014**, 8, 125–133. [Google Scholar] [Green Version] - Hyde, T.H.; Saber, M.; Sun, W. Testing and modelling of creep crack growth in compact tension specimens from a P91 weld at 650 °C. Eng. Fract. Mech.
**2010**, 77, 2946–2957. [Google Scholar] [CrossRef] - Basirat, M.; Shrestha, T.; Potirniche, G.P.; Charit, I.; Rink, K. A study of the creep behavior of modified 9Cr–1Mo steel using continuum-damage modeling. Int. J. Plast.
**2012**, 37, 95–107. [Google Scholar] [CrossRef] - Rouse, J.P.; Cortellino, F.; Sun, W.; Hyde, T.H.; Shingledecker, J. Small punch creep testing: review on modelling and data interpretation. Mater. Sci. Technol.
**2013**, 29, 1328–1345. [Google Scholar] [CrossRef] - Mahmoudi, A.H.; Truman, C.E.; Smith, D.J. Using local out-of-plane compression (LOPC) to study the effects of residual stress on apparent fracture toughness. Eng. Fract. Mech.
**2008**, 75, 1516–1534. [Google Scholar] [CrossRef] - Cao, J.R.; Liu, Z.D.; Cheng, S.C.; Yang, G.; Xie, J.X. Influences of strain rate and deformation temperature on flow stress and critical dynamic recrystallization of heat resistant steel T122. Acta Metall. Sinica
**2007**, 43, 35–40. [Google Scholar] - Liu, D.Z.; Li, Y.; Liu, H.S.; Wang, Z.R.; Wang, Y. Numerical Investigations on Residual Stress in Laser Penetration Welding Process of Ultrafine-Grained Steel. Adv. Mater. Sci. Eng.
**2018**, 2018, 8609325. [Google Scholar] [CrossRef] - Torres, J.D.; Faria, E.A.; Prado, A.G. Thermodynamic studies of the interaction at the solid/liquid interface between metal ions and cellulose modified with ethylenediamine. J. Hazard. Mater.
**2006**, 129, 239–243. [Google Scholar] [CrossRef] - Kirkaldy, J.S.; Vanugopalan, D. Prediction of microstructure and hardenability in low alloy steels. In Proceedings of the International Conference on Phase Transformation in Ferrous Alloys, Philadelphia, PA, USA, 4–6 October 1983; Marder, A.R., Goldstein, J.I., Eds.; TMS-AIME: Warrendale, PA, USA, 1984; pp. 125–148. [Google Scholar]
- Ye, Q.B.; Xie, Q.; Liu, Z.Y.; Wang, G.D. Effect of ultrafast cooling on preventing abnormal microstructural banding at centerline of steel plate. J. Northeastern Univ.
**2017**, 38, 1696–1702. [Google Scholar] - Rice, J.; Tracey, D. Computational fracture mechanics. In Numerical and Computer Methods in Structural Mechanics; Fenves, S.J., Ed.; Academic Press: New York, NY, USA, 1973; pp. 585–623. [Google Scholar]
- Hayhurst, D.R.; Hayhurst, R.J.; Vakili-Tahami, F. Continuum damage mechanics predictions of creep damage initiation and growth in ferritic steel weldments in a medium bore branched pipe under constant pressure at 590 °C using a five-material weld model. Proc. Math. Phys. Eng. Sci.
**2005**, 461, 2303–2326. [Google Scholar] [CrossRef] - Zhao, L.; Jing, H.Y.; Xu, L.Y.; An, J.C.; Xiao, G.C. Numerical investigation of factors affecting creep damage accumulation in ASME P92 steel welded joint. Mater. Des.
**2012**, 34, 566–575. [Google Scholar] [CrossRef] - Rui, B.; Hao, L.; Lu, S.; Yue, C.; Fei, B. Experimental investigation of creep crack growth behavior in nickel base superally by constant displacement loading method at elevated temperature. Mater. Sci. Eng. A
**2016**, 665, 161–170. [Google Scholar] - Zhou, H.; Mehmanparast, A.; Davies, C.M.; Nikbin, K.M. Evaluation of fracture mechanics parameters for bimaterial compact tension specimens. Mater. Res. Innovations
**2013**, 17, 318–322. [Google Scholar] [CrossRef] - Zhao, L. Research on life assessment method considering constraint effect for P92 pipe with defects at elevated temperature. Ph.D. Thesis, Tianjin University, Tianjin, China, 2012. [Google Scholar]
- Yatomi, M.; O’Dowd, N.P.; Nikbin, K.M.; Webster, G.A. Theoretical and numerical modelling of creep crack growth in a carbon–manganese steel. Eng. Fract. Mech.
**2006**, 73, 1158–1175. [Google Scholar] [CrossRef] - Ling, X.; Tu, S.T.; Gong, J.M. Application of Runge–Kutta–Merson algorithm for creep damage analysis. Int. J. Press. Vessels Pip.
**2000**, 77, 243–248. [Google Scholar] [CrossRef] - Humphreys, C.J. The significance of bragg’s law in electron diffraction and microscopy, and bragg’s second law. Acta Crystallogr.
**2013**, 69, 45–50. [Google Scholar] [CrossRef] - Nix, W.D.; Matlock, D.K.; Dimelfi, R.J. A model for creep fracture based on the plastic growth of cavities at the tips of grain boundary wedge cracks. Acta Metall.
**1977**, 25, 495–503. [Google Scholar] [CrossRef] - Hayhurst, D.R.; Lin, J.; Hayhurst, R.J. Failure in notched tension bars due to high-temperature creep: Interaction between nucleation controlled cavity growth and continuum cavity growth. Int. J. Solids Struct.
**2008**, 45, 2233–2250. [Google Scholar] [CrossRef] [Green Version] - Crichton, G.C.; Karlsson, P.W.; Pedersen, A. Partial discharges in ellipsoidal and spheroidal voids. IEEE Trans. Electr. Insul.
**1989**, 24, 335–342. [Google Scholar] [CrossRef] [Green Version] - Anderson, P.M.; Rice, J.R. Constrained creep cavitation of grain boundary facets. Acta Metall.
**1985**, 33, 409–422. [Google Scholar] [CrossRef]

**Figure 7.**The evolution of creep strain at different lifetime fractions of the specimen with the high residual stress level. (

**a**) 0%, (

**b**) 50%, (

**c**) 80%, and (

**d**) 100%.

**Figure 8.**The evolution of creep strain at different lifetime fractions of the specimen with the low residual stress level. (

**a**) 0%, (

**b**) 50%, (

**c**) 80%, and (

**d**) 100%.

**Figure 9.**The evolution of the load line displacement caused by elastic deformation and creep deformation under different residual stress levels. (

**a**) High residual stress level and (

**b**) low residual stress level.

**Figure 10.**Creep crack distribution at the lifetime fraction of 90%. (

**a**) The introduced prior residual stress level higher than the material intrinsic flow stress level and (

**b**) the introduced residual stress value level less than the material intrinsic flow stress level.

**Figure 11.**Creep fracture surface at different lifetime fractions of the specimen with different residual stress levels: high residual stress level (

**a**–

**d**): (

**a**) 0%, (

**b**) 50%, (

**c**) 80%, and (

**d**) 100%; and low residual stress level (

**e**–

**h**): (

**e**) 0%, (

**f**) 50%, (

**g**) 80%, and (

**h**) 100%.

Material | C | Mn | Si | Cr | Mo | S | P | Nb | V | Al | Ni | W | N | B | Bal. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

P92 steel | 0.1 | 0.45 | 0.35 | 8.95 | 0.96 | 0.01 | 0.018 | 0.08 | 0.215 | 0.04 | 0.12 | 1.47 | 0.043 | 0.001 | Fe |

Parameter | β | N (um) | D (m^{2}/s) | ΔT (°C) | q | σ_{0.2} (MPa) | n | ε_{0} |
---|---|---|---|---|---|---|---|---|

Value | 0.3054 | 20 | 2.09 × 10^{−12} | 123.1 | 3 | 440 | 0.129 | 1 |

Residual Stress Level | Pre-Compression Load (KN) | Loading Speed (mm/min) | Compressing Magnitude (%) | Stretching Magnitude (%) | Maximum Residual Stress Value (MPa) | Material Intrinsic Flow Stress Value (MPa) |
---|---|---|---|---|---|---|

High level | 42.8 | 0.16 | 3.82 | 2.15 | 182 | 145 |

Low level | 20.6 | 0.12 | 1.78 | 1.03 | 97 | 145 |

Material Parameter | A (MPa/h) | B (MPa^{−1}) | C | H (MPa) | H* | K_{c} (MPa^{−3}/h) | E (GPa) | v |
---|---|---|---|---|---|---|---|---|

Value | 2.21618 × 10^{−9} | 3.473 × 10^{−3} | 9.85 × 10^{−2} | 2.43 × 10^{6} | 0.5929 | 9.227 × 10^{−4} | 125 | 0.3 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, D.; Li, Y.; Xie, X.; Liang, G.; Zhao, J.
Estimating the Influences of Prior Residual Stress on the Creep Rupture Mechanism for P92 Steel. *Metals* **2019**, *9*, 639.
https://doi.org/10.3390/met9060639

**AMA Style**

Liu D, Li Y, Xie X, Liang G, Zhao J.
Estimating the Influences of Prior Residual Stress on the Creep Rupture Mechanism for P92 Steel. *Metals*. 2019; 9(6):639.
https://doi.org/10.3390/met9060639

**Chicago/Turabian Style**

Liu, Dezheng, Yan Li, Xiangdong Xie, Guijie Liang, and Jing Zhao.
2019. "Estimating the Influences of Prior Residual Stress on the Creep Rupture Mechanism for P92 Steel" *Metals* 9, no. 6: 639.
https://doi.org/10.3390/met9060639