Improved Discharge Performance of AZ72-0.05La Alloy Anode via Refining Mg17Al12 Phase
Abstract
1. Introduction
2. Experimental Section
2.1. Anode Preparation
2.2. Microstructure Characterization
2.3. Electrochemical Tests and Corrosion Performance Testing
2.4. Mechanical Performance Testing
2.5. Mg-Air Battery Test
3. Results and Discussion
3.1. Microstructure Evolution
3.2. Electrochemical Properties and Corrosion Resistance
3.3. Mechanical Properties
3.4. Discharge Performance of Alloy-Based Anodes
4. Conclusions
- (1)
- The as-cast AZ72-0.05La alloy has a relatively coarse and strip-like β-Mg17Al12 phase, while the β-Mg17Al12 phase becomes much finer and shows a granular state after rolling.
- (2)
- After rolling, the microstructure of the Mg matrix changes from dendrites to equiaxed crystals. The corrosion of the Mg anode initiates from the β-Mg17Al12 at the grain boundary for the as-cast AZ72-0.05La alloy. After rolling, the corrosion of the Mg anode initiates from the grain boundary, and the discharge activity is enhanced.
- (3)
- At a high current density of 20 mA·cm−2, the as-rolled AZ72-0.05La alloy has a discharge voltage of 0.74 V and an energy density of 918 mWh·g−1, which are 6% and 3% higher than the as-cast AZ72-0.05La alloy, respectively. In addition, the as-rolled AZ72-0.05La alloy possesses a relatively low corrosion rate of 0.51 mg·cm−2·h−1, showing good comprehensive discharge performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, Z.; Qian, G.; Wang, C.; Zhang, G.; Yin, R.; Liu, W.; Liu, R.; Chen, Y. Progress in electrode materials for the industrialization of sodium-ion batteries. Prog. Nat. Sci. Mater. Int. 2023, 33, 1–7. [Google Scholar] [CrossRef]
- Ding, D.; Du, Y.; Tang, M.; Bo, S.; Ning, G.; Zhang, H.; Guo, S. Corrosion and discharge behavior of Mg–Zn–Mn–Nd alloys as primary Mg–air batteries anode. Trans. Nonferrous Met. Soc. China 2023, 33, 2014–2029. [Google Scholar] [CrossRef]
- Deng, M.; Wang, L.; Vaghefinazari, B.; Xu, W.; Feiler, C.; Lamaka, S.; Hoeche, D.; Zheludkevich, M.; Snihirova, D. High-energy and durable aqueous magnesium batteries: Recent advances and perspectives. Energy Storage Mater. 2021, 43, 238–247. [Google Scholar] [CrossRef]
- Xiong, H.; Yu, K.; Yin, X.; Dai, Y.; Yan, Y.; Zhu, H. Effects of microstructure on the electrochemical discharge behavior of Mg-6wt% Al-1wt% Sn alloy as anode for Mg-air primary battery. J. Alloys Compd. 2017, 708, 652–661. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, R.; Pei, Y.; Gao, X.; Jiang, L.; Zou, J. Effect of Rolling Deformation on Corrosion and Discharge Behavior of AZ91 Magnesium Alloy. Adv. Eng. Mater. 2023, 25, 2200890. [Google Scholar] [CrossRef]
- Wang, N.; Mu, Y.; Xiong, W.; Zhang, J.; Li, Q.; Shi, Z. Effect of crystallographic orientation on the discharge and corrosion behavior of AP65 magnesium alloy anodes. Corros. Sci. 2018, 144, 107–126. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Le, Q.; Zhang, M.; Liu, M.; Atrens, A. A comprehensive review of the development of magnesium anodes for primary batteries. J. Mater. Chem. A 2021, 9, 12367–12399. [Google Scholar] [CrossRef]
- Deng, M.; Wang, L.; Höche, D.; Lamaka, S.V.; Jiang, P.; Snihirova, D.; Scharnagl, N.; Zheludkevich, M.L. Ca/In micro alloying as a novel strategy to simultaneously enhance power and energy density of primary Mg-air batteries from anode aspect. J. Power Sources 2020, 472, 228528. [Google Scholar] [CrossRef]
- Gu, X.; Cheng, W.; Cheng, S.; Liu, Y.; Wang, Z.; Yu, H.; Cui, Z.; Wang, L.; Wang, H. Tailoring the microstructure and improving the discharge properties of dilute Mg-Sn-Mn-Ca alloy as anode for Mg-air battery through homogenization prior to extrusion. J. Mater. Sci. Technol. 2021, 60, 77–89. [Google Scholar] [CrossRef]
- Xiong, H.; Zhu, H.; Luo, J.; Yu, K.; Shi, C.; Fang, H.; Zhang, Y. Effects of heat treatment on the discharge behavior of Mg-6wt.% Al-1wt.% Sn alloy as anode for magnesium-air batteries. J. Mater. Eng. Perform. 2017, 26, 2901–2911. [Google Scholar] [CrossRef]
- Liu, X.; Xue, J.; Zhang, P.; Wang, Z. Effects of the combinative Ca, Sm and La additions on the electrochemical behaviors and discharge performance of the as-extruded AZ91 anodes for Mg-air batteries. J. Power Sources 2019, 414, 174–182. [Google Scholar] [CrossRef]
- Ma, J.; Wang, G.; Li, Y.; Ren, F.; Volinsky, A. Electrochemical performance of Mg-air batteries based on AZ series magnesium alloys. Ionics 2019, 25, 2201–2209. [Google Scholar] [CrossRef]
- Yang, H.; Wu, L.; Jiang, B.; Liu, W.; Song, J.; Huang, G.; Zhang, D.; Pan, F. Clarifying the roles of grain boundary and grain orientation on the corrosion and discharge processes of α-Mg based Mg-Li alloys for primary Mg-air batteries. J. Mater. Sci. Technol. 2021, 62, 128–138. [Google Scholar] [CrossRef]
- Pechberty, C.; Klein, A.; Fraisse, B.; Stievano, L.; Berthelot, R. Mechanisms of electrochemical magnesium (de) alloying of Mg-Sn and Mg-Pb polymorphs. J. Magnes. Alloys 2022, 10, 1609–1616. [Google Scholar] [CrossRef]
- Zhang, G.; Luo, Z.; Zhang, H.; Chu, R. Ignition-proof mechanism of magnesium alloy added with rare earth La from first-principle study. J. Rare Earths 2012, 30, 573–578. [Google Scholar] [CrossRef]
- Ma, B.; Tan, C.; Ouyang, L.; Shao, H.; Wang, N.; Zhu, M. Microstructure and discharge performance of Mg-La alloys as the anodes for primary magnesium-air batteries. J. Alloys Compd. 2022, 918, 165803. [Google Scholar] [CrossRef]
- Feng, Y.; Lei, G.; He, Y.; Wang, R.; Wang, X. Discharge performance of Mg-Al-Pb-La anode for Mg-air battery. Trans. J. Nonferrous Met. Soc. 2018, 28, 2274–2286. [Google Scholar] [CrossRef]
- Song, Y.; Su, D.; Yang, Q.; Yuan, M.; Jiang, B.; Jiang, L.; Pan, F. Micro-alloyed mg-Al-Mn-La anode for mg-air batteries. J. Electrochem. Soc. 2021, 168, 090526. [Google Scholar] [CrossRef]
- Wang, N.; Wang, R.; Peng, C.; Feng, Y.; Chen, B. Effect of hot rolling and subsequent annealing on electrochemical discharge behavior of AP65 magnesium alloy as anode for seawater activated battery. Corros. Sci. 2012, 64, 17–27. [Google Scholar] [CrossRef]
- Yang, H.; Wu, L.; Jiang, B. Enhancement of corrosion resistance and discharge performance of Mg–5Li–3Al–1Zn sheet for Mg-air battery via rolling. J. Electrochem. Soc. 2020, 167, 110529. [Google Scholar] [CrossRef]
- Li, Q.; Ye, W.; Gao, H.; Gao, L. Improving the corrosion resistance of ZEK100 magnesium alloy by combining high-pressure torsion technology with hydroxyapatite coating. Mater. Des. 2019, 181, 107933. [Google Scholar] [CrossRef]
- An, S.; Liu, X.; Wang, Z.; Ren, F. Effect of rare earth lanthanum on corrosion and electrochemical properties of Mg-7Al-2Zn magnesium alloy anode. J. Henan Univ. Sci. Technol. (Nat. Sci.) 2023, 44, 17–24. [Google Scholar]
- Wu, Y.; Wang, Z.; Liu, Y.; Li, G.; Xie, S.; Yu, H.; Xiong, H. AZ61 and AZ61-La alloys as anodes for Mg-air battery. J. Mater. Eng. Perform. 2019, 28, 2006–2016. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Guo, Z.; Pan, F. Solidification microstructural constituent and its crystallographic morphology of permanent-mould-cast Mg-Zn-Al alloys. Trans. Nonferrous Met. Soc. China 2006, 16, 452–458. [Google Scholar] [CrossRef]
- Li, Z.; Gu, X.; Lou, S.; Zheng, Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 2008, 29, 1329–1344. [Google Scholar] [CrossRef]
- Fan, L.; Lu, H. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes. J. Power Sources 2015, 284, 409–415. [Google Scholar] [CrossRef]
- Chen, X.; Zou, Q.; Le, Q.; Hou, J.; Guo, R.; Wang, H.; Hu, C.; Bao, L.; Wang, T.; Zhao, D. The quasicrystal of Mg-Zn-Y on discharge and electrochemical behaviors as the anode for Mg-air battery. Power Sources 2020, 451, 227807. [Google Scholar] [CrossRef]
- Chen, X.; Ning, S.; Le, Q.; Wang, H.; Zou, Q.; Guo, R.; Hou, J.; Jia, Y.; Atrens, A.; Yu, F. Effects of external field treatment on the electrochemical behaviors and discharge performance of AZ80 anodes for Mg-air batteries. Mater. Sci.Technol. 2020, 38, 47–55. [Google Scholar] [CrossRef]
- Song, Y.; Yao, K.; Zou, Q.; Yang, Q.; Jiang, B.; Wang, L.; Yuan, M.; Wang, Q.; Huang, G.; Pan, F. Processing micro-alloyed Mg-la binary alloy into a high-performance Mg-air battery anode via extrusion. J. Electrochem. Soc. 2022, 169, 020575. [Google Scholar] [CrossRef]
- Jiang, M.; Yan, H.; Chen, R. Microstructure, texture and mechanical properties in an as-cast AZ61 Mg alloy during multi-directional impact forging and subsequent heat treatment. Mater. Des. 2015, 87, 891–900. [Google Scholar] [CrossRef]
- Chen, X.; Jia, Y.; Shi, Z.; Le, Q.; Li, J.; Zhang, M.; Liu, M.; Atrens, A. Understanding the discharge behavior of an ultra-high-purity Mg anode for Mg-air primary battery. J. Mater. Chem. A 2021, 9, 21387–21401. [Google Scholar] [CrossRef]
- Jin, Z.; Cheng, X.; Zha, M.; Rong, J.; Zhang, H.; Wang, J.; Wang, C.; Li, Z.; Wang, H. Effects of Mg17Al12 second phase particles on twinning-induced recrystallization behavior in Mg–Al–Zn alloys during gradient hot rolling. J. Mater. Sci. Technol 2019, 35, 2017–2026. [Google Scholar] [CrossRef]
- Al Bacha, S.; Aubert, I.; Devos, O.; Zakhour, M.; Nakhl, M.; Bobet, J.-L. Corrosion of pure and milled Mg17Al12 in “model” seawater solution. Int. J. Hydrogen Energy 2020, 45, 15805–15813. [Google Scholar] [CrossRef]
- Song, Y.; Ma, J.; Li, Y.; Wang, G.; Qin, C.; Stock, H.-R. Effects of second phases in anode materials on discharge performance of Mg-air batteries. Ionics 2019, 25, 5899–5906. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Le, Q.; Jia, Y.; Zhou, X.; Yu, F.; Atrens, A. The role of long-period stacking ordered phase on the discharge and electrochemical behaviors of magnesium anode Mg-Zn-Y for the primary Mg-air battery. Int. J. Energy Res. 2020, 44, 8865–8876. [Google Scholar] [CrossRef]
Alloys | Al | Zn | La | Mg |
---|---|---|---|---|
AZ72 | 9.470 | 2.152 | 0.000 | Bal. |
AZ72-0.05La | 8.566 | 1.831 | 0.043 | Bal. |
Sample | Ecorr/V | Icorr/μA·cm−2 |
---|---|---|
as-cast AZ72 | −1.52 | 262 |
as-cast AZ72-0.05La | −1.42 | 155 |
as-rolled AZ72-0.05La | −1.41 | 205 |
Sample | Rs/Ω·cm−2 | CPEdl/F·cm−2 | n1 | Rct/Ω·cm2 | L/H·cm2 | RL/Ω·cm2 | χ2/10−3 |
---|---|---|---|---|---|---|---|
as-cast AZ72 | 15.31 | 0.23 × 10−6 | 0.93 | 130.30 | 47.70 | 128.80 | 6.30 |
as-cast AZ72-0.05La | 9.84 | 8.79 × 10−6 | 0.94 | 799.10 | 322.20 | 735.00 | 14.00 |
as-rolled AZ72-0.05La | 9.05 | 8.90 × 10−6 | 0.93 | 330.60 | 392.60 | 734.70 | 17.70 |
Corrosion Parameters | As-Cast AZ72 | As-Cast AZ72-0.05La | As-Rolled AZ72-0.05La |
---|---|---|---|
Corrosion rate/mg·cm−2·h−1 | 11.12 ± 5.47 | 2.70 ± 1.34 | 3.40 ± 1.57 |
Hydrogen evolution rate/mL·cm−2·h−1 | 1.24 ± 0.30 | 0.34 ± 0.12 | 0.51 ± 0.24 |
Current Density (mA cm−2) | As-Cast AZ72 | As-Cast AZ72-0.05La | As-Rolled AZ72-0.05La | |
---|---|---|---|---|
Average discharge voltage (V) | 2.5 | 1.340 | 1.323 | 1.350 |
5 | 1.128 | 1.243 | 1.280 | |
10 | 1.009 | 1.064 | 1.136 | |
20 | 0.681 | 0.703 | 0.742 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Wang, B.; An, S. Improved Discharge Performance of AZ72-0.05La Alloy Anode via Refining Mg17Al12 Phase. Metals 2024, 14, 344. https://doi.org/10.3390/met14030344
Guo J, Wang B, An S. Improved Discharge Performance of AZ72-0.05La Alloy Anode via Refining Mg17Al12 Phase. Metals. 2024; 14(3):344. https://doi.org/10.3390/met14030344
Chicago/Turabian StyleGuo, Junqing, Bo Wang, and Shizhong An. 2024. "Improved Discharge Performance of AZ72-0.05La Alloy Anode via Refining Mg17Al12 Phase" Metals 14, no. 3: 344. https://doi.org/10.3390/met14030344
APA StyleGuo, J., Wang, B., & An, S. (2024). Improved Discharge Performance of AZ72-0.05La Alloy Anode via Refining Mg17Al12 Phase. Metals, 14(3), 344. https://doi.org/10.3390/met14030344