Leaching of Waste Pharmaceutical Blister Package Aluminium in Sulphuric Acid Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Leaching Experiments
2.2.2. Electrochemical Experiments
3. Results
3.1. Effect of Leaching Parameters (Acidity, Temperature, Time, Use of H2O2 and S:L Ratio) on Aluminium Extraction
3.2. Leaching Mechanism
3.3. Leaching Kinetics
3.4. Regression Modelling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Primary Aluminium Production—International Aluminium Institute. Available online: https://international-aluminium.org/statistics/primary-aluminium-production/ (accessed on 2 May 2023).
- OECD Global Forum on Environment Focusing on Sustainable Materials Management. Available online: http://www.oecd.org/environment/resourceproductivityandwaste/46194971.pdf (accessed on 2 May 2023).
- Circular Aluminium Action Plan: A Strategy for Achieving Aluminium’s Full Potential for Circular Economy by 2030. Available online: https://european-aluminium.eu/wp-content/uploads/2022/08/european-aluminium-circular-aluminium-action-plan.pdf (accessed on 2 May 2023).
- Sun, Y.; Huang, X.; Liu, C.; Zhou, M.; Zhang, X. Impurity Iron Separation from Molten Secondary Aluminum by Pulsed Electric Current. J. Alloys Compd. 2022, 934, 167903. [Google Scholar] [CrossRef]
- Habashi, F. Handbook of Aluminum: Volume 2: Alloy Production and Materials Manufacturing; Totten, G.E., MacKenzie, D.S., Eds.; CRC press: Boca Raton, FL, USA, 2003; Volume 2, pp. 38–40. ISBN 978-0824708962. [Google Scholar]
- Kondo, M.; Maeda, H.; Mizuguchi, M. The Production of High-Purity Aluminum in Japan. JOM 1990, 42, 36–37. [Google Scholar] [CrossRef]
- Padamata, S.K.; Yasinskiy, A.; Polyakov, P. A Review of Secondary Aluminum Production and Its Byproducts. JOM 2021, 73, 2603–2614. [Google Scholar] [CrossRef]
- de Oliveira, D.P.; Costa, J.S.R.; Oliveira-Nascimento, L. Sustainability of Blisters for Medicines in Tablet Form. Sustain. Chem. Pharm. 2021, 21, 1–7. [Google Scholar] [CrossRef]
- Dalal, S.P.; Dalal, P.; Motiani, R.; Solanki, V. Experimental Investigation on Recycling of Waste Pharmaceutical Blister Powder as Partial Replacement of Fine Aggregate in Concrete. Resour. Conserv. Recycl. Adv. 2022, 14, 200076. [Google Scholar] [CrossRef]
- Shukla, S.; Halli, P.; Khalid, M.K.; Lundström, M. Waste Pharmaceutical Blister Packages as a Source of Secondary Aluminum. JOM 2022, 74, 612–621. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Wang, C.Q.; Wang, H.; Liu, Y.N. Separation of Polyethylene Terephthalate from Municipal Waste Plastics by Froth Flotation for Recycling Industry. Waste Manag. 2015, 35, 42–47. [Google Scholar] [CrossRef]
- Gente, V.; la Marca, F.; Lucci, F.; Massacci, P. Electrical Separation of Plastics Coming from Special Waste. Waste Manag. 2003, 23, 951–958. [Google Scholar] [CrossRef]
- Gente, V.; la Marca, F.; Lucci, F.; Massacci, P.; Pani, E. Cryo-Comminution of Plastic Waste. Waste Manag. 2004, 24, 663–672. [Google Scholar] [CrossRef]
- Agarwal, V.; Halli, P.; Helin, S.; Tesfaye, F.; Lundström, M. Electrohydraulic Fragmentation of Aluminum and Polymer Fractions from Waste Pharmaceutical Blisters. ACS Sustain. Chem. Eng. 2020, 8, 4137–4145. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Liu, Y. Separation of Aluminum and Plastic by Metallurgy Method for Recycling Waste Pharmaceutical Blisters. J. Clean. Prod 2015, 102, 378–383. [Google Scholar] [CrossRef]
- Wang, C.-Q.; Wang, H.; Gu, G.-H.; Fu, J.-G.; Liu, Y.-N. Kinetics and Leaching Behaviors of Aluminum from Pharmaceutical Blisters in Sodium Hydroxide Solution. J. Cent. South Univ. 2015, 22, 4545–4550. [Google Scholar] [CrossRef]
- Yousef, S.; Mumladze, T.; Tatariants, M.; Kriūkienė, R.; Makarevicius, V.; Bendikiene, R.; Denafas, G. Cleaner and Profitable Industrial Technology for Full Recovery of Metallic and Non-Metallic Fraction of Waste Pharmaceutical Blisters Using Switchable Hydrophilicity Solvents. J. Clean. Prod. 2018, 197, 379–392. [Google Scholar] [CrossRef]
- Nieminen, J.; Anugwom, I.; Kallioinen, M.; Mänttäri, M. Green Solvents in Recovery of Aluminium and Plastic from Waste Pharmaceutical Blister Packaging. Waste Manag. 2020, 107, 20–27. [Google Scholar] [CrossRef] [PubMed]
- N,N-Dimethylcyclohexylamine|C8H17N—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/N_N-Dimethylcyclohexylamine (accessed on 2 May 2023).
- Tsakiridis, P.E. Aluminium Salt Slag Characterization and Utilization—A Review. J. Hazard. Mater. 2012, 217–218, 1–10. [Google Scholar] [CrossRef]
- Amer, A.M. Extracting Aluminum from Dross Tailings. JOM 2002, 54, 72–75. [Google Scholar] [CrossRef]
- Feng, C.; Liu, Y.; Sun, M.; Zhang, W.; Zhang, J.; Wang, S. Investigation of Aluminum Gate CMP in a Novel Alkaline Solution. J. Semicond. 2016, 37, 016002. [Google Scholar] [CrossRef]
- Sadawy, M.M. Effect of Al2O3 Additives on the Corrosion and Electrochemical Behavior of Steel Embedded in Ordinary Portland Cement Concrete. Am. J. Mater. Res. 2014, 1, 53–58. [Google Scholar]
- Dorella, G.; Mansur, M.B. A Study of the Separation of Cobalt from Spent Li-Ion Battery Residues. J. Power Sources 2007, 170, 210–215. [Google Scholar] [CrossRef]
- Klyuchnikova, N.; Lumar’, E. Use of Cermet Binder to Obtain Mullite-Corundum Material. Glass Ceram. 2015, 72, 18–20. [Google Scholar] [CrossRef]
- Ferreira, D.A.; Prados, L.M.Z.; Majuste, D.; Mansur, M.B. Hydrometallurgical Separation of Aluminium, Cobalt, Copper and Lithium from Spent Li-Ion Batteries. J. Power Sources 2009, 187, 238–246. [Google Scholar] [CrossRef]
- Chernyaev, A.; Zou, Y.; Wilson, B.P.; Lundström, M. The Interference of Copper, Iron and Aluminum with Hydrogen Peroxide and Its Effects on Reductive Leaching of LiNi1/3Mn1/3Co1/3O2. Sep. Purif. Technol. 2022, 281. [Google Scholar] [CrossRef]
- Lewis, T.J. The Corrosion of Aluminium in Concentrated Hydrogen Peroxide. J. Appl. Chem. 2007, 11, 405–413. [Google Scholar] [CrossRef]
- Perry, R.H.; Green, D.W.; Maloney, J.O. Perry’s Chemical Engineers’ Handbook; McGraw-Hill: San Francisco, CA, USA, 1984; p. 121. ISBN 0070498415. [Google Scholar]
- Shreve, R.N.; Austin, G.T. Shreve’s Chemical Process Industries, 5th ed.; Austin, G.T., Ed.; McGraw-Hill: Noida, India, 1984; p. 357. ISBN 9781259029455. [Google Scholar]
- Chow, C.W.K.; van Leeuwen, J.A.; Fabris, R.; Drikas, M. Optimised Coagulation Using Aluminium Sulfate for the Removal of Dissolved Organic Carbon. Desalination 2009, 245, 120–134. [Google Scholar] [CrossRef]
- Birnin-Yauri, A.U.; Aliyu, M. Synthesis and Analysis of Potassium Aluminium Sulphate (Alum) from Waste Aluminium Can. Int. J. Adv. Res. Chem. Sci. 2014, 1, 1–6. [Google Scholar]
- Barik, S.P.; Park, K.H.; Parhi, P.K.; Park, J.T.; Nam, C.W. Extraction of Metal Values from Waste Spent Petroleum Catalyst Using Acidic Solutions. Sep. Purif. Technol. 2012, 101, 85–90. [Google Scholar] [CrossRef]
- Lisińska, M.; Saternus, M.; Willner, J. Research of Leaching of the Printed Circuit Boards Coming from Waste Mobile Phones. Arch. Metall. Mater. 2018, 63, 143–147. [Google Scholar] [CrossRef]
- Chernyaev, A.; Wilson, B.P.; Lundström, M. Study on Valuable Metal Incorporation in the Fe–Al Precipitate during Neutralization of LIB Leach Solution. Sci. Rep. 2021, 11, 23283. [Google Scholar] [CrossRef]
- Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; Wiley: Bengaluru, India, 1998; p. 580. ISBN 978-0-471-25424-9. [Google Scholar]
- Ashraf, M.; Zafar, Z.I.; Ansari, T.M. Selective Leaching Kinetics and Upgrading of Low-Grade Calcareous Phosphate Rock in Succinic Acid. Hydrometallurgy 2005, 80, 286–292. [Google Scholar] [CrossRef]
- Abdel-Aal, E.A. Kinetics of Sulfuric Acid Leaching of Low-Grade Zinc Silicate Ore. Hydrometallurgy 2000, 55, 247–254. [Google Scholar] [CrossRef]
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wikstroè, C.; Wold, S. Design of Experiments, Principles and Applications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; Volume 15, pp. 38–39. ISBN 9197373001. [Google Scholar]
- Mohapatra, D.; Park, K.H. Selective Recovery of Mo, Co and Al from Spent Co/Mo/γ -Al 2O3 Catalyst: Effect of Calcination Temperature. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2007, 42, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Mbedzi, N.; Ibana, D.; Dyer, L.; Browner, R. The Effect of Oxidant Addition on Ferrous Iron Removal from Multi-Element Acidic Sulphate Solutions. AIP Conf. Proc. 2017, 1805. [Google Scholar] [CrossRef] [Green Version]
O | Al | Cl | Fe | Total | |
---|---|---|---|---|---|
Aluminium Film | 1.03 | 95.57 | 1.93 | 0.47 | 100 |
Experimental Set | Experiment Code | Temperature (°C) | H2SO4 (M) | S:L Ratio (g/L) | Time (h) |
PE | PE-1 | 80 | 0.25 | 4.0 | 24 |
PE-2 | 80 | 0.50 | 4.0 | 24 | |
PE-3 | 80 | 0.75 | 4.0 | 24 | |
PE-4 | 80 | 1.00 | 4.0 | 24 | |
Experimental Set | Experiment Code | Temperature (°C) | H2O2 (vol.%) | S:L ratio (g/L) | Time (h) |
T1 | A1 * | 40 | 0 | 4.5 | 24 |
A2 * | 60 | 0 | 4.5 | 24 | |
A3 *# | 80 | 0 | 4.5 | 24 | |
A4 * | 40 | 1.25 | 4.5 | 24 | |
A5 * | 60 | 1.25 | 4.5 | 24 | |
A6 *# | 80 | 1.25 | 4.5 | 24 | |
A7 * | 40 | 2.5 | 4.5 | 24 | |
A8 * | 60 | 2.5 | 4.5 | 24 | |
A9 *# | 80 | 2.5 | 4.5 | 24 | |
T2 | A10 | 60 | 1.25 | 4.5 | 24 |
A11 | 60 | 1.25 | 4.5 | 24 | |
A12 | 60 | 1.25 | 4.5 | 24 | |
T3 | A13 | 50 | 0 | 4.5 | 5 |
A14 | 70 | 0 | 4.5 | 5 | |
A15 | 50 | 1.25 | 4.5 | 5 | |
A16 | 70 | 1.25 | 4.5 | 5 | |
A17 | 40 | 0.625 | 4.5 | 5 | |
A18 | 60 | 0.625 | 4.5 | 5 | |
A19 | 40 | 1.875 | 4.5 | 5 | |
A20 | 60 | 1.875 | 4.5 | 5 | |
T4 | A21 | 60 | 1.25 | 2.25 | 5 |
A22 | 60 | 1.25 | 3.375 | 5 | |
A23 | 60 | 1.25 | 5.625 | 5 | |
A24 | 60 | 1.25 | 6.75 | 5 | |
A25 | 80 | 1.25 | 2.25 | 5 | |
A26 | 80 | 1.25 | 3.375 | 5 | |
A27 | 80 | 1.25 | 5.625 | 5 | |
A28 | 80 | 1.25 | 6.75 | 5 |
A5 | A10 | A11 | A12 | |
---|---|---|---|---|
Slope: | 11.70 | 10.04 | 10.18 | 10.22 |
Mean for the slopes: | 8.59 | |||
Standard deviation for the slopes: | 0.78 | |||
Coefficient of variation (CV): | 0.09 |
Initial Lixiviant | PLS (A3 #) | PLS (A6 #) | PLS (A9 #) | |
---|---|---|---|---|
[H+] conc. (mol/L) | 0.265 | 0.159 | 0.060 | 0.053 |
pH | 0.58 | 0.80 | 1.23 | 1.27 |
Model | Q2 | R2 | R2 (adj.) | Reproducibility |
---|---|---|---|---|
Reaction rate constant (t = 5 h) | 0.471 | 0.918 | 0.871 | 0.997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shukla, S.; Chernyaev, A.; Halli, P.; Aromaa, J.; Lundström, M. Leaching of Waste Pharmaceutical Blister Package Aluminium in Sulphuric Acid Media. Metals 2023, 13, 1118. https://doi.org/10.3390/met13061118
Shukla S, Chernyaev A, Halli P, Aromaa J, Lundström M. Leaching of Waste Pharmaceutical Blister Package Aluminium in Sulphuric Acid Media. Metals. 2023; 13(6):1118. https://doi.org/10.3390/met13061118
Chicago/Turabian StyleShukla, Sugam, Alexander Chernyaev, Petteri Halli, Jari Aromaa, and Mari Lundström. 2023. "Leaching of Waste Pharmaceutical Blister Package Aluminium in Sulphuric Acid Media" Metals 13, no. 6: 1118. https://doi.org/10.3390/met13061118
APA StyleShukla, S., Chernyaev, A., Halli, P., Aromaa, J., & Lundström, M. (2023). Leaching of Waste Pharmaceutical Blister Package Aluminium in Sulphuric Acid Media. Metals, 13(6), 1118. https://doi.org/10.3390/met13061118