Conformal and Transparent Al2O3 Passivation Coating via Atomic Layer Deposition for High Aspect Ratio Ag Network Electrodes
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, L.; Kim, H.S.; Lee, J.Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrova, M.; Kurtev, N.; Videkov, V.; Tzanova, S.; Schintke, S. Material alternative to ITO for transparent conductive electrode in flexible display and photovoltaic devices. Microelectron. Eng. 2015, 145, 112–116. [Google Scholar] [CrossRef]
- Raman, V.; Lee, J.E.; Kim, H.K. Mechanically flexible multi-stacked ITO/PEDOT:PSS hybrid superlattice films for transparent conductive electrodes. J. Alloys Compd. 2022, 903, 163799. [Google Scholar] [CrossRef]
- Raman, V.; Jo, J.; Kim, H.K. ITO and graphene-covered Ag grids embedded in PET substrate by thermal roll imprinting for flexible organic solar cells. Mater. Sci. Semicond. Process. 2020, 120, 105277. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, S.H.; Lee, J.H.; Lee, S.J.; Kim, H.K. Hydrophobic and stretchable Ag nanowire network electrode passivated by a sputtered PTFE layer for self-cleaning transparent thin film heaters. RSC Adv. 2018, 8, 18508–18518. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Kim, Y.J.; Lee, Y.R.; Lee, N.E.; Won, Y.; Gandla, S.; Kim, S.; Kim, H.K. Highly stretchable metal-polymer hybrid conductors for wearable and self-cleaning sensors. NPG Asia Mater. 2021, 13, 4. [Google Scholar] [CrossRef]
- Xu, K.; Lu, Y.; Takei, K. Multifunctional Skin-Inspired Flexible Sensor Systems for Wearable Electronics. Adv. Mater. Technol. 2019, 4, 1800628. [Google Scholar] [CrossRef]
- Kim, D.; Zhu, L.; Jeong, D.J.; Chun, K.; Bang, Y.Y.; Kim, S.R.; Kim, J.H.; Oh, S.K. Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires. Carbon 2013, 63, 530–536. [Google Scholar] [CrossRef]
- Khan, A.; Rahman, F. Study of microstructural and optical properties of nanocrystalline indium oxide: A transparent conducting oxide (TCO). AIP Conf. Proc. 2019, 2115, 2–6. [Google Scholar]
- Afre, R.A.; Sharma, N.; Sharon, M.; Sharon, M. Transparent conducting oxide films for various applications: A review. Rev. Adv. Mater. Sci. 2018, 53, 79–89. [Google Scholar] [CrossRef]
- Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.H.; Kim, P.; Choi, J.Y.; Hong, B.H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Levitt, A.S.; Alhabeb, M.; Hatter, C.B.; Sarycheva, A.; Dion, G.; Gogotsi, Y. Electrospun MXene/Carbon Nanofibers as Supercapacitor Electrodes. J. Mater. Chem. A 2019, 7, 269–277. [Google Scholar] [CrossRef]
- Lv, T.; Yao, Y.; Li, N.; Chen, T. Wearable Fiber-Shaped Energy Conversion and Storage Devices Based on Aligned Carbon Nanotubes. Nano Today 2016, 11, 644–660. [Google Scholar] [CrossRef]
- Dauzon, E.; Lin, Y.; Faber, H.; Yengel, E.; Sallenave, X.; Plesse, C.; Goubard, F.; Amassian, A.; Anthopoulos, T.D. Stretchable and Transparent Conductive PEDOT:PSS-Based Electrodes for Organic Photovoltaics and Strain Sensors Applications. Adv. Funct. Mater. 2020, 30, 2001251. [Google Scholar] [CrossRef]
- Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review. Adv. Electron. Mater. 2015, 1, 1500017. [Google Scholar] [CrossRef]
- Liu, H.S.; Pan, B.C.; Liou, G.S. Highly Transparent AgNW/PDMS Stretchable Electrodes for Elastomeric Electrochromic Devices. Nanoscale 2017, 9, 2633–2639. [Google Scholar] [CrossRef]
- Lim, M.; Kim, H.J.; Ko, E.H.; Choi, J.; Kim, H.K. Ultrafast Laser-Assisted Selective Removal of Self-Assembled Ag Network Electrodes for Flexible and Transparent Film Heaters. J. Alloys Compd. 2016, 688, 198–205. [Google Scholar] [CrossRef]
- Kim, H.T.; Jung, S.K.; Lee, S.-Y. Properties of ITO films deposited on paper sheets using a low frequency (60Hz) DC-pulsed magnetron sputtering method. Vacuum 2021, 187, 110056. [Google Scholar] [CrossRef]
- Li, H.; Gao, Y.J.; Yuan, S.-H.; Wuu, D.-S.; Wu, W.-Y.; Zhang, S. Improvement in the Figure of Merit of ITO-Metal-ITO sandwiched films on poly substrate by high-power impulse magnetron sputtering. Coatings 2021, 11, 144. [Google Scholar] [CrossRef]
- Wen, Y.; Xu, J. Scientific Importance of Water-Processable PEDOT–PSS and Preparation, Challenge and New Application in Sensors of Its Film Electrode: A Review. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 1121–1150. [Google Scholar] [CrossRef]
- Liu, J.; Jia, D.; Gardner, J.M.; Johansson, E.M.J.; Zhang, X. Metal Nanowire Networks: Recent Advances and Challenges for New Generation Photovoltaics. Mater. Today Energy 2019, 13, 152–185. [Google Scholar] [CrossRef]
- Lee, J.E.; Kim, H.K. Self-Cleanable, Waterproof, Transparent, and Flexible Ag Networks Covered by Hydrophobic Polytetrafluoroethylene for Multi-Functional Flexible Thin Film Heaters. Sci. Rep. 2019, 9, 16723. [Google Scholar] [CrossRef] [PubMed]
- Seo, K.W.; Noh, Y.J.; Na, S.I.; Kim, H.K. Random Mesh-like Ag Networks Prepared via Self-Assembled Ag Nanoparticles for ITO-Free Flexible Organic Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 155, 51–59. [Google Scholar] [CrossRef]
- Kim, K.; Kim, S.; Jung, G.H.; Lee, I.; Kim, S.; Ham, J.; Dong, W.J.; Hong, K.; Lee, J.L. Extremely flat metal films implemented by surface roughness transfer for flexible electronics. RSC Adv. 2018, 8, 10883–10888. [Google Scholar] [CrossRef]
- Lin, C.C.; Lin, D.X.; Lin, S.H. Degradation Problem in Silver Nanowire Transparent Electrodes Caused by Ultraviolet Exposure. Nanotechnology 2020, 31, 215705. [Google Scholar] [CrossRef]
- Lan, S.; Shin, H.I.; Kim, H.K. Electrically Stable Ag Nanowire Network Anodes Densely Passivated by a Conductive Amorphous InSnTiO Layer for Flexible Organic Photovoltaics. Appl. Phys. Lett. 2020, 117, 123303. [Google Scholar] [CrossRef]
- Seo, K.W.; Kim, M.Y.; Chang, H.S.; Kim, H.K. Self-Assembled Ag Nanoparticle Network Passivated by a Nano-Sized ZnO Layer for Transparent and Flexible Film Heaters. AIP Adv. 2015, 5, 127132. [Google Scholar] [CrossRef]
- Xiang, Q.; Zhou, B.; Cao, K.; Wen, Y.; Li, Y.; Wang, Z.; Jiang, C.; Shan, B.; Chen, R. Bottom up Stabilization of CsPbBr3 Quantum Dots-Silica Sphere with Selective Surface Passivation via Atomic Layer Deposition. Chem. Mater. 2018, 30, 8486–8494. [Google Scholar] [CrossRef]
- Wong, M.S.; Hwang, D.; Alhassan, A.I.; Lee, C.; Ley, R.; Nakamura, S.; DenBaars, S.P. High Efficiency of III-Nitride Micro-Light-Emitting Diodes by Sidewall Passivation Using Atomic Layer Deposition. Opt. Express 2018, 26, 21324. [Google Scholar] [CrossRef]
- Macco, B.; Black, L.E.; Melskens, J.; van de Loo, B.W.H.; Berghuis, W.J.H.; Verheijen, M.A.; Kessels, W.M.M. Atomic-Layer Deposited Nb2O5 as Transparent Passivating Electron Contact for c-Si Solar Cells. Sol. Energy Mater. Sol. Cells 2018, 184, 98–104. [Google Scholar] [CrossRef]
- Saint-Cast, P.; Benick, J.; Kania, D.; Weiss, L.; Hofmann, M.; Rentsch, J.; Preu, R.; Glunz, S.W. High-Efficiency c-Si Solar Cells Passivated with ALD and PECVD Aluminum Oxide. IEEE Electron. Device Lett. 2010, 31, 695–697. [Google Scholar] [CrossRef]
- Schmidt, J.; Veith, B.; Brendel, R. Effective Surface Passivation of Crystalline Silicon Using Ultrathin Al2O3 Films and Al2O3/SiNx Stacks. Phys. Status Solidi-Rapid Res. Lett. 2009, 3, 287–289. [Google Scholar] [CrossRef]
- Dingemans, G.; Seguin, R.; Engelhart, P.; van de Sanden, M.C.M.; Kessels, W.M.M. Silicon Surface Passivation by Ultrathin Al2O3 Films Synthesized by Thermal and Plasma Atomic Layer Deposition. Phys. Status Solidi- Rapid Res. Lett. 2010, 4, 10–12. [Google Scholar] [CrossRef]
- Kang, K.S.; Jeong, S.Y.; Jeong, E.G.; Choi, K.C. Reliable High Temperature, High Humidity Flexible Thin Film Encapsulation Using Al2O3/MgO Nanolaminates for Flexible OLEDs. Nano Res. 2020, 13, 2716–2725. [Google Scholar] [CrossRef]
- Kwon, T.S.; Moon, D.Y.; Moon, Y.K.; Kim, W.S.; Park, J.W. Al2O3/TiO2 Multilayer Passivation Layers Grown at Low Temperature for Flexible Organic Devices. J. Nanosci. Nanotechnol. 2012, 12, 3696–3700. [Google Scholar] [CrossRef]
- Cremers, V.; Puurunen, R.L.; Dendooven, J. Conformality in Atomic Layer Deposition: Current Status Overview of Analysis and Modelling. Appl. Phys. Rev. 2019, 6, 021302. [Google Scholar] [CrossRef]
- Zazpe, R.; Knaut, M.; Sopha, H.; Hromadko, L.; Albert, M.; Prikryl, J.; Gärtnerová, V.; Bartha, J.W.; Macak, J.M. Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers. Langmuir 2016, 32, 10551–10558. [Google Scholar] [CrossRef]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A Brief Review of Atomic Layer Deposition: From Fundamentals to Applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Min, B.-D.; Lee, J.-S.; Kim, S.-S. Al2O3 Nano-Coating by Atomic Layer Deposition. Trans. Electr. Electron. Mater. 2003, 4, 15–18. [Google Scholar] [CrossRef]
- Tuan, W.H.; Chen, R.Z.; Wang, T.C.; Cheng, C.H.; Kuo, P.S. Mechanical Properties of Al2O3/ZrO2 Composites. J. Eur. Ceram. Soc. 2002, 22, 2827–2833. [Google Scholar] [CrossRef]
- Kim, S.W.; Kang, C.; Kim, H.K. Highly Transparent, Flexible, and Hydrophobic Polytetrafluoroethylene Thin Film Passivation for ITO/AgPdCu/ITO Multilayer Electrodes. Adv. Mater. Interfaces 2022, 9, 2101823. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Choi, T.-Y.; Cheon, H.-S.; Youn, H.-Y.; Lee, G.-W.; Lee, S.-N.; Kim, H.-K. Conformal and Transparent Al2O3 Passivation Coating via Atomic Layer Deposition for High Aspect Ratio Ag Network Electrodes. Metals 2023, 13, 528. https://doi.org/10.3390/met13030528
Lee J-H, Choi T-Y, Cheon H-S, Youn H-Y, Lee G-W, Lee S-N, Kim H-K. Conformal and Transparent Al2O3 Passivation Coating via Atomic Layer Deposition for High Aspect Ratio Ag Network Electrodes. Metals. 2023; 13(3):528. https://doi.org/10.3390/met13030528
Chicago/Turabian StyleLee, Ju-Hyeon, Tae-Yang Choi, Ho-Sung Cheon, Hye-Young Youn, Gun-Woo Lee, Sung-Nam Lee, and Han-Ki Kim. 2023. "Conformal and Transparent Al2O3 Passivation Coating via Atomic Layer Deposition for High Aspect Ratio Ag Network Electrodes" Metals 13, no. 3: 528. https://doi.org/10.3390/met13030528
APA StyleLee, J.-H., Choi, T.-Y., Cheon, H.-S., Youn, H.-Y., Lee, G.-W., Lee, S.-N., & Kim, H.-K. (2023). Conformal and Transparent Al2O3 Passivation Coating via Atomic Layer Deposition for High Aspect Ratio Ag Network Electrodes. Metals, 13(3), 528. https://doi.org/10.3390/met13030528