A Grey-Box Model of Laser Powder Directed Energy Deposition for Complex Scanning Strategy
Abstract
:1. Introduction
2. Modelling Approach
2.1. Problem and Solution Formulation
2.1.1. Melt Pool Geometry
2.1.2. Power Loss Calculation
3. Model Implementation and Validation
3.1. Model Implementation
| Algorithm 1: Alghoritm of the logic loop cycle. |
![]() |
3.2. Experimental Validation of the Model
4. Results and Discussion
4.1. Temperature Distribution
4.2. Track Dimensions
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
| Specific heat capacity (Jkg−1K−1) | |
| D | Melt pool depth (mm) |
| f | Logic function |
| Green’s function | |
| H | Deposition height of the track (mm) |
| Local deposition height (mm) | |
| h | Convective heat transfer coefficient (Wmm−2K−1) |
| L | Melt pool total length (mm) |
| Melt pool front length (mm) | |
| Melt pool rear length (mm) | |
| Latent heat of fusion (Jkg−1) | |
| Latent heat of vaporization (Jkg−1) | |
| N | Number of segment of the laser path |
| O | Coordinates system origin of |
| Coordinates system origin of | |
| P | Laser power (W) |
| Power losses due to convection (W) | |
| Power losses due to evaporation (W) | |
| Overall power losses (W) | |
| Power losses due to powder melting (W) | |
| Power losses due to radiation (W) | |
| Useful power (W) | |
| Powder flow rate (gmin−1) | |
| Powder mass flux (g·s−1·mm−2) | |
| Substrate reference frame | |
| Melt pool reference frame | |
| r | Laser beam radius (mm) |
| Powder stream radius (mm) | |
| s | Integration variable |
| T | Temperature (K) |
| Ambient temperature (K) | |
| Initial temperature (K) | |
| Melting temperature (K) | |
| Mean melt pool temperature (K) | |
| Peak temperature (K) | |
| Temperature contribution due to the initial temperature (K) | |
| Temperature contribution due to the heat flux (K) | |
| t | Time (s) |
| Melt pool volume above the top of the substrate (mm3) | |
| Melt pool volume below the top of the substrate (mm3) | |
| v | Travel speed (mm·s−1) |
| W | Melt pool width (mm) |
| Coordinate system of (mm) | |
| Coordinate system of (mm) | |
| Coordinates of the center of laser beam in (mm) | |
| Limit error of the loop cycle | |
| Substrate absorbivity | |
| Emissivity | |
| Thermal diffusivity (mm2s−1) | |
| Thermal conductivity (WmmK) | |
| Density (kgmm−3) | |
| Stefan–Boltzman constant (Wmm−2K−4) | |
| Integration variable | |
| Heat flux (Wmm−2) | |
| ( | Coordinates of a generic point in (mm) |
| Dimensionless variable | |
| AM | Additive Manufacturing |
| DED | Directed Energy Deposition |
| DED-LB | Directed Energy Deposition using a laser based system |
| CFD | Computational Fluid Dynamics |
| FEM | Finite Element Method |
| PBF-LB | Powder Bed Fusion using a laser based system |
References
- Leino, M.; Pekkarinen, J.; Soukka, R. The Role of Laser Additive Manufacturing Methods of Metals in Repair, Refurbishment and Remanufacturing – Enabling Circular Economy. Phys. Procedia 2016, 83, 752–760. [Google Scholar] [CrossRef]
- Saboori, A.; Aversa, A.; Marchese, G.; Biamino, S.; Lombardi, M.; Fino, P. Application of Directed Energy Deposition-Based Additive Manufacturing in Repair. Appl. Sci. 2019, 9, 3316. [Google Scholar] [CrossRef]
- Thompson, S.M.; Bian, L.; Shamsaei, N.; Yadollahi, A. An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Addit. Manuf. 2015, 8, 36–62. [Google Scholar] [CrossRef]
- Lhabitant, S.; Badouaille, F.; Remache, D.; Cohen, G.; Toufine, A. Repair & maintenance by Metal Additive Manufacturing process on Titanium alloy parts. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1024, 012022. [Google Scholar] [CrossRef]
- Marya, M.; Singh, V.; Hascoet, J.; Marya, S. A Metallurgical Investigation of the Direct Energy Deposition Surface Repair of Ferrous Alloys. J. Mater. Eng. Perform. 2018, 27, 813–824. [Google Scholar] [CrossRef]
- Ferreira, N.M.; Vila Pouca, M.; Fernandes, C.; Seabra, J.; Lesiuk, G.; Parente, M.; Jesus, A. Direct Energy Deposition Parametric Simulation Investigation in Gear Repair Applications. Materials 2023, 16, 3549. [Google Scholar] [CrossRef]
- Piscopo, G.; Iuliano, L. Current research and industrial application of laser powder directed energy deposition. Int. J. Adv. Manuf. Technol. 2022, 119, 6893–6917. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.; Fang, X.; Guo, Y. Residual Stress in Metal Additive Manufacturing. Procedia CIRP 2018, 71, 348–353. [Google Scholar] [CrossRef]
- Svetlizky, D.; Das, M.; Zheng, B.; Vyatskikh, A.L.; Bose, S.; Bandyopadhyay, A.; Schoenung, J.M.; Lavernia, E.J.; Eliaz, N. Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications. Mater. Today 2021, 49, 271–295. [Google Scholar] [CrossRef]
- Liu, J.; Jalalahmadi, B.; Guo, Y.; Sealy, M.; Bolander, N. A review of computational modeling in powder-based additive manufacturing for metallic part qualification. Rapid Prototyp. J. 2018, 24, 1245–1264. [Google Scholar] [CrossRef]
- Poggi, M.; Atzeni, E.; Iuliano, L.; Salmi, A. State-of-the-art of numerical simulation of laser powder Directed Energy Deposition process. Procedia CIRP 2022, 112, 376–381. [Google Scholar] [CrossRef]
- Kumara, C.; Segerstark, A.; Hanning, F.; Dixit, N.; Joshi, S.; Moverare, J.; Nylén, P. Microstructure modelling of laser metal powder directed energy deposition of alloy 718. Addit. Manuf. 2019, 25, 357–364. [Google Scholar] [CrossRef]
- Baykasoglu, C.; Akyildiz, O.; Candemir, D.; Yang, Q.; To, A.C. Predicting Microstructure Evolution During Directed Energy Deposition Additive Manufacturing of Ti-6Al-4V. J. Manuf. Sci. Eng. 2018, 140, 051003. [Google Scholar] [CrossRef]
- Liu, S.; Shin, Y.C. Integrated 2D cellular automata-phase field modeling of solidification and microstructure evolution during additive manufacturing of Ti6Al4V. Comput. Mater. Sci. 2020, 183, 109889. [Google Scholar] [CrossRef]
- Lu, X.; Lin, X.; Chiumenti, M.; Cervera, M.; Hu, Y.; Ji, X.; Ma, L.; Yang, H.; Huang, W. Residual stress and distortion of rectangular and S-shaped Ti-6Al-4V parts by Directed Energy Deposition: Modelling and experimental calibration. Addit. Manuf. 2019, 26, 166–179. [Google Scholar] [CrossRef]
- Vundru, C.; Singh, R.; Yan, W.; Karagadde, S. Effect of spreading of the melt pool on the deposition characteristics in laser directed energy deposition. Procedia Manuf. 2021, 53, 407–416. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, Q.; Meng, R. CFD–DPM Simulation Study of the Effect of Powder Layer Thickness on the SLM Spatter Behavior. Metals 2022, 12, 1897. [Google Scholar] [CrossRef]
- Haley, J.C.; Schoenung, J.M.; Lavernia, E.J. Modelling particle impact on the melt pool and wettability effects in laser directed energy deposition additive manufacturing. Mater. Sci. Eng. A 2019, 761, 138052. [Google Scholar] [CrossRef]
- Colaço, R.; Costa, L.; Guerra, R.; Vilar, R. A Simple Correlation Between the Geometry of Laser Cladding Tracks and the Process Parameters. In Laser Processing: Surface Treatment and Film Deposition; Springer: Berlin/Heidelberg, Germany, 1996; pp. 421–429. [Google Scholar] [CrossRef]
- Pinkerton, A.; Li, L. Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances. J. Phys. D Appl. Phys. 2004, 37, 1885. [Google Scholar] [CrossRef]
- Picasso, M.; Marsden, C.; Wagniere, J.; Frenk, A.; Rappaz, M. A Simple but Realistic Model for Laser Cladding. MEtallurgical Mater. Trans. B 1994, 25, 281–291. [Google Scholar] [CrossRef]
- Kaplan, A.F.H.; Weinberger, B.; Schuoecker, D. Theoretical analysis of laser cladding and alloying. In Proceedings of the Lasers in Material Processing; Beckmann, L.H.J.F., Ed.; International Society for Optics and Photonics. SPIE: Bellingham, WA, USA, 1997; Volume 3097, pp. 499–506. [Google Scholar] [CrossRef]
- Peyre, P.; Aubry, P.; Fabbro, R.; Neveu, R.; Longuet, A. Analytical and numerical modelling of the direct metal deposition laser process. J. Phys. Appl. Phys. 2008, 41, 025403. [Google Scholar] [CrossRef]
- Ahsan, M.N.; Pinkerton, A.J. An analytical–numerical model of laser direct metal deposition track and microstructure formation. Model. Simul. Mater. Sci. Eng. 2011, 19, 055003. [Google Scholar] [CrossRef]
- Wan, L.; Shi, S.; Xia, Z.; Shi, T.; Zou, Y.; Li, K.; Chen, X. Directed energy deposition of CNTs/AlSi10Mg nanocomposites: Powder preparation, temperature field, forming, and properties. Opt. Laser Technol. 2021, 139, 106984. [Google Scholar] [CrossRef]
- Stender, M.E.; Beghini, L.L.; Sugar, J.D.; Veilleux, M.G.; Subia, S.R.; Smith, T.R.; Marchi, C.W.S.; Brown, A.A.; Dagel, D.J. A thermal-mechanical finite element workflow for directed energy deposition additive manufacturing process modeling. Addit. Manuf. 2018, 21, 556–566. [Google Scholar] [CrossRef]
- Gan, Z.; Yu, G.; He, X.; Li, S. Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel. Int. J. Heat Mass Transf. 2017, 104, 28–38. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, J.; Liang, X.; To, A.C. A level-set based continuous scanning path optimization method for reducing residual stress and deformation in metal additive manufacturing. Comput. Methods Appl. Mech. Eng. 2020, 360, 112719. [Google Scholar] [CrossRef]
- Biegler, M.; Elsner, B.A.M.; Graf, B.; Rethmeier, M. Geometric distortion-compensation via transient numerical simulation for directed energy deposition additive manufacturing. Sci. Technol. Weld. Join. 2020, 25, 468–475. [Google Scholar] [CrossRef]
- Hu, D.; Kovacevic, R. Modelling and measuring the thermal behaviour of the molten pool in closed-loop controlled laser-based additive manufacturing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2003, 217, 441–452. [Google Scholar] [CrossRef]
- Prokhorov, A.; Konov, V.; Ursu, I.; Mihailescu, N. Laser Heating of Metals; Series in Optics and Optoelectronics; Taylor & Francis: Abingdon, UK, 1990. [Google Scholar]
- Cline, H.E.; Anthony, T.R. Heat treating and melting material with a scanning laser or electron beam. J. Appl. Phys. 2008, 48, 3895–3900. [Google Scholar] [CrossRef]
- Carslaw, H.S.H.S. Conduction of Heat in Solids, 2nd ed.; Carslaw, H.S., Jaeger, J.C., Eds.; Clarendon Press: Oxford, UK, 1959. [Google Scholar]
- Forslund, R.; Snis, A.; Larsson, S. Analytical solution for heat conduction due to a moving Gaussian heat flux with piecewise constant parameters. Appl. Math. Model. 2019, 66, 227–240. [Google Scholar] [CrossRef]
- Piscopo, G.; Atzeni, E.; Salmi, A. A Hybrid Modeling of the Physics-Driven Evolution of Material Addition and Track Generation in Laser Powder Directed Energy Deposition. Materials 2019, 12, 2819. [Google Scholar] [CrossRef] [PubMed]
- Pinkerton, A.; Li, L. An analytical model of energy distribution in laser direct metal deposition. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 2004, 218, 363–374. [Google Scholar] [CrossRef]
- Salcudean, M.; Choi, M.; Greif, R. A study of heat transfer during arc welding. Int. J. Heat Mass Transf. 1986, 29, 215–225. [Google Scholar] [CrossRef]
- Azinpour, E.; Darabi, R.; Cesar de Sa, J.; Santos, A.; Hodek, J.; Dzugan, J. Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach. Finite Elem. Anal. Des. 2020, 177, 103417. [Google Scholar] [CrossRef]
- Sciammarella, F.; Salehi Najafabadi, B. Processing Parameter DOE for 316L Using Directed Energy Deposition. J. Manuf. Mater. Process. 2018, 2, 61. [Google Scholar] [CrossRef]
- Saboori, A.; Piscopo, G.; Lai, M.; Salmi, A.; Biamino, S. An investigation on the effect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by Directed Energy Deposition. Mater. Sci. Eng. A 2020, 780, 139179. [Google Scholar] [CrossRef]
- Oh, W.J.; Lee, W.J.; Kim, M.S.; Jeon, J.B.; Shim, D.S. Repairing additive-manufactured 316L stainless steel using direct energy deposition. Opt. Laser Technol. 2019, 117, 6–17. [Google Scholar] [CrossRef]
- Poggi, M.; Salmi, A.; Atzeni, E.; Iuliano, L. Effect of process parameters on AISI 316L single tracks by laser powder directed energy deposition. Procedia CIRP 2023, 118, 735–740. [Google Scholar] [CrossRef]
- Piscopo, G.; Atzeni, E.; Biamino, S.; Iuliano, L.; Mazzucato, F.; Saboori, A.; Salmi, A.; Valente, A. Analysis of single tracks of IN718 produced by laser powder directed energy deposition process. Procedia CIRP 2022, 112, 340–345. [Google Scholar] [CrossRef]











| Input Category | Input |
|---|---|
| Material properties | Thermal characteristics |
| Mechanical characteristics | |
| Powder radius | |
| Boundary conditions | Ambient and initial temperature |
| Convection coefficient | |
| Process parameters | Laser power |
| Travel speed | |
| Powder flow rate | |
| Machine parameters | Laser spot diameter |
| Powder stream radius |
| Property | Symbol | Value | Units |
|---|---|---|---|
| Density | 8 × 10 | kgmm | |
| Specific heat capacity | 800 | JkgK | |
| Thermal conductivity | 21.4 × 10 | WmmK | |
| Thermal diffusivity | 3.34 | mms | |
| Latent heat of fusion | 260 × 10 | Jkg | |
| Latent heat of vaporization | 6259.5 | Jkg | |
| Convective heat transfer | h | 1 × 10 | Wmm−2K−1 |
| Stefan Bolzman constant | 5.67 × 10 | WmmK | |
| Emissivity | 0.6 | − |
| Track ID | Power (W) | Travel Speed (mmmin−1) | Powder Flow Rate (gmin−1) |
|---|---|---|---|
| L01 | 700 | 600 | 8.9 |
| L02 | 700 | 600 | 13.1 |
| L03 | 700 | 600 | 17.2 |
| L04 | 700 | 800 | 8.9 |
| L05 | 700 | 800 | 13.1 |
| L06 | 700 | 800 | 17.2 |
| L07 | 700 | 1000 | 8.9 |
| L08 | 700 | 1000 | 13.1 |
| L09 | 700 | 1000 | 17.2 |
| L10 | 900 | 600 | 8.9 |
| L11 | 900 | 600 | 13.1 |
| L12 | 900 | 600 | 17.2 |
| L13 | 900 | 800 | 8.9 |
| L14 | 900 | 800 | 13.1 |
| L15 | 900 | 800 | 17.2 |
| L16 | 900 | 1000 | 8.9 |
| L17 | 900 | 1000 | 13.1 |
| L18 | 900 | 1000 | 17.2 |
| Track ID | Power (W) | Travel Speed (mmmin−1) | Powder Flow Rate (gmin−1) |
|---|---|---|---|
| C01/S01 | 720 | 480 | 13.1 |
| C02/S02 | 720 | 480 | 17.2 |
| C03/S03 | 810 | 540 | 13.1 |
| C04/S04 | 810 | 540 | 17.2 |
| C05/S05 | 900 | 600 | 13.1 |
| C06/S06 | 900 | 600 | 17.2 |
| Track ID | Peak Temperature (°C) |
|---|---|
| L01 | 1824 |
| L02 | 1763 |
| L03 | 1686 |
| L04 | 1730 |
| L05 | 1688 |
| L06 | 1590 |
| L07 | 1652 |
| L08 | 1624 |
| L09 | 1565 |
| L10 | 2061 |
| L11 | 1952 |
| L12 | 1817 |
| L13 | 1962 |
| L14 | 1881 |
| L15 | 1808 |
| L16 | 1934 |
| L17 | 1864 |
| L18 | 1796 |
| Track ID | Peak Temperature (°C) |
|---|---|
| C01 | 2174 |
| C02 | 2063 |
| C03 | 2144 |
| C04 | 2037 |
| C05 | 2278 |
| C06 | 2175 |
| Track ID | Peak Temperature (°C) |
|---|---|
| S01 | 2268 |
| S02 | 2151 |
| S03 | 2229 |
| S04 | 2173 |
| S05 | 2383 |
| S06 | 2275 |
| Track ID | (mm) | (mm) | (%) | (mm) | (mm) | (%) |
|---|---|---|---|---|---|---|
| L01 | 1.67 ± 0.02 | 1.80 | 8% | 0.25 ± 0.02 | 0.31 | 26% |
| L02 | 1.62 ± 0.05 | 1.67 | 3% | 0.50 ± 0.01 | 0.43 | −15% |
| L03 | 1.62 ± 0.07 | 1.38 | −15% | 0.42 ± 0.01 | 0.47 | 12% |
| L04 | 1.55 ± 0.04 | 1.56 | 1% | 0.23 ± 0.01 | 0.21 | −11% |
| L05 | 1.51 ± 0.03 | 1.46 | −3% | 0.33 ± 0.01 | 0.28 | −13% |
| L06 | 1.61 ± 0.07 | 1.29 | −20% | 0.35 ± 0.01 | 0.33 | −5% |
| L07 | 1.45 ± 0.04 | 1.34 | −7% | 0.17 ± 0.01 | 0.15 | −15% |
| L08 | 1.43 ± 0.02 | 1.26 | −12% | 0.21 ± 0.01 | 0.20 | −6% |
| L09 | 1.49 ± 0.03 | 1.19 | −20% | 0.21 ± 0.02 | 0.20 | −5% |
| L10 | 2.00 ± 0.02 | 2.22 | 11% | 0.36 ± 0.02 | 0.38 | 4% |
| L11 | 1.88 ± 0.06 | 2.09 | 11% | 0.56 ± 0.02 | 0.54 | −3% |
| L12 | 1.86 ± 0.04 | 1.95 | 5% | 0.58 ± 0.02 | 0.66 | 13% |
| L13 | 1.90 ± 0.02 | 1.99 | 5% | 0.30 ± 0.01 | 0.27 | −10% |
| L14 | 1.79 ± 0.04 | 1.87 | 4% | 0.34 ± 0.01 | 0.37 | 9% |
| L15 | 1.78 ± 0.05 | 1.77 | −1% | 0.62 ± 0.03 | 0.46 | −25% |
| L16 | 1.81 ± 0.03 | 1.93 | 7% | 0.17 ± 0.01 | 0.22 | 24% |
| L17 | 1.75 ± 0.04 | 1.86 | 7% | 0.33 ± 0.01 | 0.30 | −7% |
| L18 | 1.68 ± 0.05 | 1.75 | 4% | 0.33 ± 0.01 | 0.37 | 12% |
| Track ID | (mm) | (mm) | (%) | (mm) | (mm) | (%) |
|---|---|---|---|---|---|---|
| C01 | 1.91 ± 0.03 | 1.93 | 1% | 0.48 ± 0.01 | 0.52 | 10% |
| C02 | 1.77 ± 0.04 | 1.70 | −4% | 0.56 ± 0.01 | 0.61 | 8% |
| C03 | 1.99 ± 0.01 | 2.00 | 1% | 0.43 ± 0.02 | 0.48 | 10% |
| C04 | 1.88 ± 0.07 | 1.81 | −4% | 0.52 ± 0.01 | 0.57 | 10% |
| C05 | 2.05 ± 0.04 | 2.10 | 2% | 0.39 ± 0.01 | 0.45 | 16% |
| C06 | 2.00 ± 0.02 | 1.92 | −4% | 0.44 ± 0.02 | 0.54 | 22% |
| Track ID | (mm) | (mm) | (%) | (mm) | (mm) | (%) |
|---|---|---|---|---|---|---|
| S01 | 1.92 ± 0.03 | 1.95 | 2% | 0.46 ± 0.03 | 0.53 | 22% |
| S02 | 1.70 ± 0.04 | 1.71 | 1% | 0.67 ± 0.06 | 0.61 | −8% |
| S03 | 1.99 ± 0.01 | 2.00 | +0% | 0.41 ± 0.05 | 0.49 | 19% |
| S04 | 1.83 ± 0.07 | 1.78 | −3% | 0.61 ± 0.06 | 0.56 | −7% |
| S05 | 2.02 ± 0.04 | 2.12 | 5% | 0.40 ± 0.03 | 0.45 | 13% |
| S06 | 1.98 ± 0.02 | 1.91 | -4% | 0.51 ± 0.04 | 0.55 | 9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poggi, M.; Atzeni, E.; De Chirico, M.; Salmi, A. A Grey-Box Model of Laser Powder Directed Energy Deposition for Complex Scanning Strategy. Metals 2023, 13, 1763. https://doi.org/10.3390/met13101763
Poggi M, Atzeni E, De Chirico M, Salmi A. A Grey-Box Model of Laser Powder Directed Energy Deposition for Complex Scanning Strategy. Metals. 2023; 13(10):1763. https://doi.org/10.3390/met13101763
Chicago/Turabian StylePoggi, Mirna, Eleonora Atzeni, Michele De Chirico, and Alessandro Salmi. 2023. "A Grey-Box Model of Laser Powder Directed Energy Deposition for Complex Scanning Strategy" Metals 13, no. 10: 1763. https://doi.org/10.3390/met13101763
APA StylePoggi, M., Atzeni, E., De Chirico, M., & Salmi, A. (2023). A Grey-Box Model of Laser Powder Directed Energy Deposition for Complex Scanning Strategy. Metals, 13(10), 1763. https://doi.org/10.3390/met13101763


