Production and Functional Properties of Graded Al-Based Syntactic Metal Foams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production
2.3. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hangai, Y.; Takahashi, K.; Yamaguchi, R.; Utsunomiya, T.; Kitahara, S.; Kuwazuru, O.; Yoshikawa, N. Nondestructive observation of pore structure deformation behavior of functionally graded aluminum foam by X-ray computed tomography. Mater. Sci. Eng. A 2012, 556, 678–684. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, X.-Y.; Wang, K.; He, S.-Y.; Liu, J.-G.; Zhao, W.; Gong, X.-L.; Yu, J. Fabrication of functionally radial graded metallic foam. Mater. Lett. 2020, 264, 127292. [Google Scholar] [CrossRef]
- Movahedi, N.; Conway, S.; Belova, I.V.; Murch, G.E.; Fiedler, T. Influence of particle arrangement on the compression of functionally graded metal syntactic foams. Mater. Sci. Eng. A 2019, 764, 138242. [Google Scholar] [CrossRef]
- Movahedi, N.; Murch, G.E.; Belova, I.V.; Fiedler, T. Functionally graded metal syntactic foam: Fabrication and mechanical properties. Mater. Des. 2019, 168, 107652. [Google Scholar] [CrossRef]
- Salehi, M.; Mirbagheri, S.M.H.; Ramiani, A.J. Efficient energy absorption of functionally-graded metallic foam-filled tubes under impact loading. Trans. Nonferrous Met. Soc. China (Eng. Ed.) 2021, 31, 92–110. [Google Scholar] [CrossRef]
- Huang, W.; Liu, G.; Li, H.; Wang, F.; Wang, Y. Compressive properties and failure mechanisms of gradient aluminum foams prepared by a powder metallurgy method. Metals 2021, 11, 1337. [Google Scholar] [CrossRef]
- Wang, X.H.; Li, J.S.; Hu, R.; Kou, H.C.; Zhou, L. Mechanical properties of porous titanium with different distributions of pore size. Trans. Nonferrous Met. Soc. China (Eng. Ed.) 2013, 23, 2317–2322. [Google Scholar] [CrossRef]
- Rahmani, M.; Petrudi, A.M. Optimization and experimental investigation of the ability of new material from aluminum casting on pumice particles to reduce shock wave. Period. Polytech. Mech. Eng. 2020, 64, 224–232. [Google Scholar] [CrossRef]
- Bekoz, N.; Oktay, E. Mechanical properties of low alloy steel foams: Dependency on porosity and pore size. Mater. Sci. Eng. A 2013, 576, 82–90. [Google Scholar] [CrossRef]
- Naeem, M.A.; Gábora, A.; Mankovits, T. Influence of the manufacturing parameters on the compressive properties of closed cell aluminum foams. Period. Polytech. Mech. Eng. 2020, 64, 172–178. [Google Scholar] [CrossRef]
- Yi, Z.; Si-Yuan, H.; Jia-Gui, L.; Wei, Z.; Xiao-Lu, G.; Jin, Y. Density gradient tailoring of aluminum foam-filled tube. Compos. Struct. 2019, 220, 451–459. [Google Scholar] [CrossRef]
- Timoshenko, S.P. LXVI. On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1921, 41, 744–746. [Google Scholar] [CrossRef] [Green Version]
- Van Rensburg, N.F.J.; van der Merwe, A.J. Natural frequencies and modes of a Timoshenko beam. Wave Motion 2006, 44, 58–69. [Google Scholar] [CrossRef]
- Albertelli, P.; Esposito, S.; Mussi, V.; Goletti, M.; Monno, M. Effect of metal foam on vibration damping and its modelling. Int. J. Adv. Manuf. Technol. 2021, 117, 2349–2358. [Google Scholar] [CrossRef]
- Banhart, J.; Baumeister, J.; Weber, M. Damping properties of aluminium foams. Mater. Sci. Eng. A 1996, 205, 221–228. [Google Scholar] [CrossRef]
- Kádár, C.; Szlancsik, A.; Dombóvári, Z.; Orbulov, I.N. Monitoring the failure states of a metal matrix syntactic foam by modal analysis. Mater. Lett. 2019, 257, 126733. [Google Scholar] [CrossRef] [Green Version]
- Geist, B.; McLaughlin, J.R. Asymptotic Formulas for the Eigenvalues of the Timoshenko Beam. J. Math. Anal. Appl. 2001, 253, 341–380. [Google Scholar] [CrossRef] [Green Version]
- Trefethen, L.N. 6. Chebyshev Differentiation Matrices. In Spectral Methods in MATLAB; Society of Industrial and Applied Mathematics: Philadelphia, PA, USA, 2000; pp. 51–59. [Google Scholar]
Material Properties | Tensile Strength Rm (MPa) | Proof Stress Rp0.2 (MPa) | Modulus of Elasticity E (GPa) | Strain A (%) | Melting Range T (°C) | Density ρ (g∙cm−3) | |||||||||
Al99.5 | 60 | 20 | 69 | 25 | 645–658 | 2.7 | |||||||||
AlSi10MnMg | 279 | 133 | 78 | 8.1 | 550–590 | 2.64 | |||||||||
Chemical Composition | Si (wt.%) | Mg (wt.%) | Fe (wt.%) | Cu (wt.%) | Mn (wt.%) | Zn (wt.%) | Ti (wt.%) | Cr (wt.%) | Al (wt.%) | ||||||
Al99.5 | max. 0.25 | max. 0.005 | max. 0.4 | max. 0.05 | max. 0.05 | max. 0.07 | max. 0.05 | - | Bal | ||||||
AlSi10MnMg | 10.50–13.00 | - | 0.45–0.90 | max. 0.08 | max. 0.55 | max. 0.15 | max. 0.15 | - | Bal |
Id | Volume Ratio of Filler Material in the Mixture (%) | ||||||
---|---|---|---|---|---|---|---|
Layer 1 | Layer 2 | Layer 3 | Layer 4 | Layer 5 | Layer 6 | Layer 7 | |
0-100 LECA | - | 20 | 40 | 60 | 80 | 100 | - |
0-100-0 LECA | 0 | 33 | 67 | 100 | 67 | 33 | 0 |
100-0-100 LECA | 100 | 67 | 33 | 0 | 33 | 67 | 100 |
100 LECA | 100 | ||||||
50 LECA | 50 | ||||||
100 CHS | 100 | ||||||
50 CHS | 50 |
Id | a (mm) | b (mm) | c (mm) | m (g) |
---|---|---|---|---|
100 LECA | 16.00 | 24.28 | 109.72 | 62.4839 |
0-100 LECA | 14.95 | 24.87 | 110.38 | 75.6855 |
0-100-0 LECA | 15.00 | 24.97 | 109.95 | 87.2848 |
100-0-100 LECA | 14.85 | 24.90 | 109.92 | 81.9114 |
50 LECA | 15.03 | 25.01 | 109.64 | 82.5562 |
100 CHS | 14.71 | 25.18 | 111.47 | 72.4299 |
50 CHS | 14.97 | 24.92 | 111.03 | 91.6829 |
Id | Without Heat Treatment | After Heat Treatment | ||||||
---|---|---|---|---|---|---|---|---|
(Hz) | (-) | (MPa) | (MPa) | (Hz) | (-) | (MPa) | (MPa) | |
100 LECA | 6374.35 | 0.0061 | 18.89 | 5.03 | 6461.69 | 0.0050 | 19.07 | 5.96 |
14,320.07 | 0.0032 | 14,734.54 | 0.0023 | |||||
0-100 LECA | 5312.50 | 0.0073 | 20.36 (20.71) | 3.06 (3.06) | 5343.33 | 0.0048 | 19.15 (19.47) | 4.38 (4.36) |
11,065.19 | 0.0042 | 11,733.33 | 0.0012 | |||||
0-100-0 LECA | 5803.09 | 0.0039 | 22.50 (21.38) | 8.91 (9.62) | 5646.67 | 0.0034 | 21.83 (20.74) | 6.69 (7.10) |
13,531.59 | 0.0033 | 12,900.00 | 0.0029 | |||||
100-0-100 LECA | 6670.03 | 0.0055 | 29.62 (32.72) | 5.08 (4.85) | 6373.33 | 0.0053 | 26.11 (28.80) | 5.46 (5.16) |
13,874.33 | 0.0026 | 13,600.00 | 0.0018 | |||||
50 LECA | 5386.42 | 0.0076 | 17.17 | 5.68 | 5630.00 | 0.0034 | 18.12 | 9.00 |
12,254.70 | 0.0045 | 13,200.00 | 0.0022 | |||||
50 CHS | 6764.11 | 0.0031 | 27.42 | 17.54 | 6493.33 | 0.0042 | 28.97 | 9.60 |
15,440.19 | 0.0034 | 14,833.33 | 0.0017 | |||||
100 CHS | 8316.53 | 0.0033 | 47.103 | 16.0259 | 9102.82 | 0.0034 | 45.48 | 13.76 |
19,250.67 | 0.0031 | 20,668.68 | 0.0031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Károly, D.; Iklódi, Z.; Kemény, A.; Kincses, D.B.; Orbulov, I.N. Production and Functional Properties of Graded Al-Based Syntactic Metal Foams. Metals 2022, 12, 263. https://doi.org/10.3390/met12020263
Károly D, Iklódi Z, Kemény A, Kincses DB, Orbulov IN. Production and Functional Properties of Graded Al-Based Syntactic Metal Foams. Metals. 2022; 12(2):263. https://doi.org/10.3390/met12020263
Chicago/Turabian StyleKároly, Dóra, Zsolt Iklódi, Alexandra Kemény, Domonkos B. Kincses, and Imre N. Orbulov. 2022. "Production and Functional Properties of Graded Al-Based Syntactic Metal Foams" Metals 12, no. 2: 263. https://doi.org/10.3390/met12020263
APA StyleKároly, D., Iklódi, Z., Kemény, A., Kincses, D. B., & Orbulov, I. N. (2022). Production and Functional Properties of Graded Al-Based Syntactic Metal Foams. Metals, 12(2), 263. https://doi.org/10.3390/met12020263