Structure, Corrosion Resistance, Mechanical and Tribological Properties of ZrB2 and Zr-B-N Coatings
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallgram, W.; Schleinkofer, U. Synthesis, Structure, and Behavior of a new CVD TiB2 Coatings with Extraordinary Properties for High Performance Applications. In Proceedings of the 17th Plansee Seminar, Reutte, Austria, 25–29 May 2009. [Google Scholar]
- Taktak, S. Tribological behaviour of borided bearing steels at elevated temperatures. Surf. Coat. Technol. 2006, 201, 2230–2239. [Google Scholar] [CrossRef]
- Hassan, H.B.; Abdel Hamid, Z. Electroless Ni-B supported on carbon for direct alcohol fuel cell applications. Int. J. Hydrogen Energy 2001, 36, 849–856. [Google Scholar] [CrossRef]
- Li, H.; Yao, D.; Fu, Q.; Liu, L.; Zhang, Y.; Yao, X.; Wang, Y.; Li, H. Anti-oxidation and ablation properties of carbon/carbon composites infiltrated by hafnium boride. Carbon 2013, 52, 418–426. [Google Scholar] [CrossRef]
- Ribeiro, R.; Ingole, S.; Usta, M.; Bindal, C.; Ucisik, A.H.; Liang, H. Tribological investigation of tantalum boride coating under dry and simulated body fluid conditions. Wear 2007, 262, 1380–1386. [Google Scholar] [CrossRef]
- Goncharov, A.A.; Ignatenko, P.I.; Petukhov, V.V.; Konovalov, V.A.; Volkova, G.K.; Stupak, V.A.; Glazunova, V.A. Composition, structure, and properties of tantalum boride nanostructured films. Tech. Phys. 2006, 51, 1340–1343. [Google Scholar] [CrossRef]
- Goncharov, A.A.; Petukhov, V.V.; Terpii, D.N.; Ignatenko, P.I.; Stupak, V.A. Nanostructured Films of Vanadium Borides. Inorg. Mater. 2005, 41, 696–699. [Google Scholar] [CrossRef]
- Kunc, F.; Musil, J.; Mayrhofer, P.H.; Mitterer, C. Low–stress superhard Ti-B films prepared by magnetron sputtering. Surf. Coat. Technol. 2003, 174–175, 744–753. [Google Scholar] [CrossRef]
- Ferrando, V.; Tarantini, C.; Manfrinetti, P.; Pallecchi, I.; Salvato, M.; Ferdeghini, C. Growth of diborides thin films on different substrates by pulsed laser ablation. Thin Solid Films 2006, 515, 1439–1444. [Google Scholar] [CrossRef][Green Version]
- Chatterjee, A.; Jayaraman, S.; Gerbi, J.E.; Kumar, N.; Abelson, J.R.; Bellon, P.; Polycarpou, A.A.; Chevalier, J.P. Tribological behavior of hafnium diboride thin films. Surf. Coat. Technol. 2006, 201, 4317–4322. [Google Scholar] [CrossRef]
- Khor, K.A.; Yu, L.G.; Sundararajan, G. Formation of hard tungsten boride layer by spark plasma sintering boriding. Thin Solid Films 2005, 478, 232–237. [Google Scholar] [CrossRef]
- Rau, J.V.; Latini, A.; Generosi, A.; Rossi Albertini, V.; Ferro, D.; Teghil, R.; Barinov, S.M. Deposition and characterization of superhard biphasic ruthenium boride films. Acta Mater. 2009, 57, 673–681. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, F.V.; Novikov, A.V.; Sagalova, T.B.; Petrzhik, M.I.; Levashov, E.A.; Shtansky, D.V. A comparative study of microstructure, oxidation resistance, mechanical, and tribological properties of coatings in Mo-B-(N), Cr-B-(N) and Ti-B-(N) systems. Phys. Met. Metallogr. 2017, 118, 1136–1146. [Google Scholar] [CrossRef]
- Levashov, E.A.; Shtansky, D.V.; Kiryukhantsev-Korneev, P.V.; Petrzhik, M.I.; Tyurina, M.Y.; Sheveiko, A.N. Multifunctional nanostructured coatings: Formation, structure, and the uniformity of measuring their mechanical and tribological properties. Russ. Metall. 2010, 917–935. [Google Scholar] [CrossRef]
- Holzschuh, H. Deposition of Ti-B-N (single and multilayer) and Zr-B-N coatings by chemical vapor deposition techniques on cutting tools. Thin Solid Films 2004, 469, 92–98. [Google Scholar] [CrossRef]
- Jayaraman, S.; Gerbi, J.E.; Yang, Y.; Kim, D.Y.; Chatterjee, A.; Bellon, P.; Girolami, G.S.; Chevalier, J.P.; Abelson, J.R. HfB2 and Hf-B-N hard coatings by chemical vapor deposition. Surf. Coat. Technol. 2006, 200, 6629–6633. [Google Scholar] [CrossRef]
- Bazhin, A.I.; Goncharov, A.A.; Petukhov, V.V.; Radjabov, T.D.; Stupak, V.A.; Konovalov, V.A. Magnetron sputtering of a vanadium–diboride target in Ar+N2 gaseous mixtures. Vacuum 2006, 80, 918–922. [Google Scholar] [CrossRef]
- Holubar, P.; Jilek, M.; Sima, M. Present and possible future applications of superhard nanocomposite coatings. Surf. Coat. Technol. 2000, 133, 145–151. [Google Scholar] [CrossRef]
- Mitterer, C.; Losbichler, P.; Werner, W.S.M.; Störi, H.; Barounig, J. Sputter deposition of decorative coatings based on ZrB2 and ZrB12. Surf. Coat. Technol. 1992, 54, 329–334. [Google Scholar] [CrossRef]
- Wang, T.-G.; Liu, Y.; Zhang, T.; Kim, D.-I.; Kim, K.H. Influence of Nitrogen Flow Ratio on the Microstructure, Composition, and Mechanical Properties of DC Magnetron Sputtered Zr-B-O-N Films. J. Mater. Sci. Technol. 2012, 28, 981–991. [Google Scholar] [CrossRef]
- Tului, M.; Ruffini, F.; Arezzo, F.; Lasisz, S.; Znamirowski, Z.; Pawlowski, L. Some properties of atmospheric air and inert gas high-pressure plasma sprayed ZrB2 coatings. Surf. Coat. Technol. 2002, 151, 483–489. [Google Scholar] [CrossRef]
- Zhong, W.; Niu, Y.; Hu, C.; Li, H.; Zeng, Y.; Zheng, X.; Ren, M.; Sun, J. High temperature oxidation resistance of metal silicide incorporated ZrB2 composite coatings prepared by vacuum plasma spray. Ceram. Int. 2015, 41, 14868–14875. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, W.; Wang, S.; Chen, Z.-H.; Chen, H.-M. ZrB2 coating for the oxidation protection of carbon fiber reinforced silicon carbide matrix composites. Vacuum 2013, 96, 63–68. [Google Scholar] [CrossRef]
- Dong, Z.H.; Peng, X.; Wang, F.H. Oxidation of a ZrB2 coating fabricated on Ta-W alloy by electrophoretic deposition and laser melting. Mater. Lett. 2015, 148, 76–78. [Google Scholar] [CrossRef]
- Kaptay, C.; Kuznetsov, S.A. Electrochemical synthesis of refractory borides from molten salts. Plasmas Ions 1999, 2, 45–56. [Google Scholar] [CrossRef]
- Verkhoturov, A.D.; Podchernyaeva, I.A.; Konevtsov, L.A. Spark alloying using metals and ZrB2-based ceramics of tungsten-containing hard alloys for increasing serviceability. Surf. Eng. Appl. Electrochem. 2007, 43, 415–424. [Google Scholar] [CrossRef]
- Verkhoturov, A.D.; Gordienko, P.S.; IPodchernyaeva, A.; Konevtsov, L.A.; Panin, E.S. The formation of protective coatings on tungsten-containing hard alloys by electrospark alloying with metals and borides. Inorg. Mater. Appl. Res. 2011, 2, 180–185. [Google Scholar] [CrossRef]
- Sung, J.; Goedde, D.M.; Girolami, G.S.; Abelson, J.R. Remote-plasma chemical vapor deposition of conformal ZrB2 films at low temperature: A promising diffusion barrier for ultralarge scale integrated electronics. J. Appl. Phys. 2002, 91, 3904–3911. [Google Scholar] [CrossRef]
- Chapusot, V.; Pierson, J.F.; Lapostolle, F.; Billard, A. Arc-evaporated nanocomposite zirconium-based boronitride coatings. Mater. Chem. Phys. 2009, 114, 780–784. [Google Scholar] [CrossRef]
- Ming’e, W.; Guojia, M.; Xing, L.; Chuang, D. Morphology and Mechanical Properties of TiN Coatings Prepared with Different PVD Methods. Rare Met. Mater. Eng. 2016, 45, 3080–3084. [Google Scholar] [CrossRef]
- Chu, C.W.; Jang, J.S.C.; Chen, H.W.; Chuang, T.L. Enhanced wear resistance of the Cr-based thin film coating on micro drill by doping with W-C-N. Thin Sold Films 2009, 517, 5197–5201. [Google Scholar] [CrossRef]
- Lawal, J.; Kiryukhantsev-Korneev, P.; Matthews, A.; Leyland, A. Mechanical properties and abrasive wear behaviour of Al-based PVD amorphous/nanostructured coatings. Surf. Coat. Technol. 2017, 310, 59–69. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, F.V.; Sheveiko, A.N.; Komarov, V.A.; Blanter, M.S.; Skryleva, E.A.; Shirmanov, N.A.; Levashov, E.A.; Shtansky, D.V. Nanostructured Ti-Cr-B-N and Ti-Cr-Si-C-N coatings for hard-alloy cutting tools. Russ. J. Non Ferrous Met. 2011, 52, 311–318. [Google Scholar] [CrossRef]
- Wu, J.; Wu, B.H.; Ma, D.L.; Xie, D.; Wu, Y.P.; Chen, C.Z.; Li, Y.T.; Sun, H.; Huang, N.; Leng, Y.X. Effects of magnetic field strength and deposition pressure on the properties of TiN films produced by high power pulsed magnetron sputtering (HPPMS). Surf. Coat. Technol. 2017, 315, 258–267. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Sheveiko, A.N.; Petrzhik, M.I. Approaches to Increasing the Adhesion Strength of Hard Wear-Resistant Nanostructured Coatings Based on the Ti-B-(Cr, Si, C)-N System. Prot. Met. Phys. Chem. Surf. 2019, 55, 502–510. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Pierson, J.F.; Bychkova, M.Y.; Manakova, O.S.; Levashov, E.A.; Shtansky, D.V. Comparative Study of Sliding, Scratching, and Impact-Loading Behavior of Hard CrB2 and Cr-B-N Films. Tribol. Lett. 2016, 63, 44–55. [Google Scholar] [CrossRef]
- Audronis, M.; Leyland, A.; Matthews, A.; Kiryukhantsev-Korneev, F.V.; Shtansky, D.V.; Levashov, E.A. The Structure and Mechanical Properties of Ti-Si-B Coatings Deposited by DC and Pulsed-DC Unbalanced Magnetron Sputtering. Plasma Process. Polym. 2007, 4, 687–692. [Google Scholar] [CrossRef]
- Vančo, M.; Krmela, J.; Pešlová, F. The Use of PVD Coating on Natural Textile Fibers. Procedia Eng. 2016, 136, 341–345. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Grigoryan, A.S.; Toporkova, A.K.; Arkhipov, A.V.; Sheveyko, A.N.; Kiryukhantsev-Korneev, P.V. Modification of polytetrafluoroethylene implants by depositing TiCaPCON films with and without stem cells. Surf. Coat. Technol. 2011, 206, 1188–1195. [Google Scholar] [CrossRef]
- Wenbin, F.; Mingjiang, D.; Chunbei, W.; Mingchun, Z.; Liang, H.; Huijun, H.; Songsheng, L. Magnetron Sputtering Preparation and Properties of SiC/MoSi2 Oxidation Protective Coating for Carbon/Carbon Composites Prepared. Rare Met. Mater. Eng. 2016, 45, 2543–2548. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Kiryukhantsev-Korneev, P.V.; Bashkova, I.A.; Sheveiko, A.N.; Levashov, E.A. Multicomponent nanostructured films for various tribological applications. Surf. Coat. Technol. 2010, 205, 728–739. [Google Scholar] [CrossRef]
- Tsai, D.-C.; Deng, M.-J.; Chang, Z.-C.; Kuo, B.-H.; Chen, E.-C.; Chang, S.-Y.; Shieu, F.-S. Oxidation resistance and characterization of (AlCrMoTaTi)-Six-N coating deposited via magnetron sputtering. J. Alloys Compd. 2015, 647, 179–188. [Google Scholar] [CrossRef]
- Lin, C.H.; Duh, J.G.; Yeh, J.W. Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter. Surf. Coat. Technol. 2007, 201, 6304–6308. [Google Scholar] [CrossRef]
- Iatsyuk, I.V.; Lemesheva, M.V.; Kiryukhantsev-Korneev, P.V.; Levashov, E.A. Structure and properties of ZrB2, ZrSiB and ZrAlSiB cathode materials and coatings obtained by their magnetron sputtering. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 347, p. 012028. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, F.V. Possibilities of glow discharge optical emission spectroscopy in the investigation of coatings. Russ. J. Non Ferrous Met. 2014, 55, 494–504. [Google Scholar] [CrossRef]
- Polyakov, M.N.; Morstein, M.; Maeder, X.; Nelis, T.; Lundin, D.; Wehrs, J.; Best, J.P.; Edwards, T.E.J.; Döbeli, M.; Michler, J. Microstructure-driven strengthening of TiB2 coatings deposited by pulsed magnetron sputtering. Surf. Coat. Technol. 2019, 368, 88–96. [Google Scholar] [CrossRef]
- González-Carmona, J.M.; Triviño, J.D.; Gómez-Ovalle, Á.; Ortega, C.; Alvarado-Orozco, J.M.; Sánchez-Sthepa, H.; Avila, A. Wear mechanisms identification using Kelvin probe force microscopy in TiN, ZrN and TiN/ZrN hard ceramic multilayers coatings. Ceram. Int. 2020, 46, 24592–24604. [Google Scholar] [CrossRef]
- Ighere, J.O.; Greaney, P.A. Characterizing Property of States: Effect of Defects on the Coefficient of Thermal Expansion and the Specific Heat Capacity of ZrB2. New J. Glass Ceram. 2020, 10, 15–27. [Google Scholar] [CrossRef][Green Version]
- Zaouali, M.; Lebrun, J.L.; Gergaud, P. X-ray diffraction determination of texture and internal stresses in magnetron PVD molybdenum thin films. Surf. Coat. Technol. 1991, 50, 5–10. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Xing, X.-J.; Jiang, X.-Y.; Wang, X.; Zhang, L.; Jian, X.; Mu, C.-H.; Han, T.-C.; Lu, H.-P.; Zhang, L.-J.; et al. Structural self-deterioration mechanism for zirconium diboride in an inert environment. Ceram. Int. 2021, in press. [Google Scholar] [CrossRef]
- Parakhonskiy, G.; Vtech, V.; Dubrovinskaia, N.; Caracas, R.; Dubrovinsky, L. Raman spectroscopy investigation of alpha boron at elevated pressures and temperatures. Solid State Commun. 2013, 154, 34–39. [Google Scholar] [CrossRef]
- Zhong, B.; Zhang, T.; Huang, X.X.; Wen, G.W.; Chen, J.W.; Wang, C.J.; Huang, Y.D. Fabrication and Raman scattering behavior of novel turbostratic BN thin films. Mater. Lett. 2015, 151, 130–133. [Google Scholar] [CrossRef]
- Pokropivny, V.; Kovrygin, S.; Gubanov, V.; Lohmus, R.; Lohmus, A.; Vesi, U. Ab-initio calculation of Raman spectra of single-walled BN nanotubes. Physica E 2008, 40, 2339–2342. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, T.G.; Yan, B.; Qi, H.J.; Guo, Y.Y.; Xu, S.S. Study on the microstructure and mechanical properties of Zr-B-(N) tool coatings prepared by hybrid coating system. Procedia Manuf. 2018, 26, 806–817. [Google Scholar] [CrossRef]
- Mitterer, C.; Uebleis, A.; Ebner, R. Sputter deposition of wear resistant coatings within the system Zr-B-N. J. Mater. Sci. Eng. 1991, 140, 670–675. [Google Scholar] [CrossRef]
- Brandstetter, E.; Mitterer, C.; Ebner, R. A transmission electron microscopy study on sputtered Zr-B and Zr-B-N films. Thin Solid Films 1991, 201, 123–135. [Google Scholar] [CrossRef]
- Jimenez, O.; Audronis, M.; Leyland, A.; Flores, M.; Rodriguez, E.; Kanakis, K.; Matthews, A. Small grain size zirconium-Based coatings deposited by magnetron sputtering at low temperatures. Thin Solid Films 2015, 591, 149–155. [Google Scholar] [CrossRef]
- Shtansky, D.V.; Kulinich, S.A.; Levashov, E.A.; Sheveiko, A.N.; Kiriuhancev, F.V.; Moore, J.J. Localized Deformation of Multicomponent Thin Films. Thin Solid Films 2002, 420, 330–337. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behaviour. Wearing 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Levashov, E.A.; Petrzhik, M.I.; Shtansky, D.V.; Kiryukhantsev-Korneev, F.V.; Sheveiko, A.N.; Valiev, R.Z.; Gunderov, D.V.; Prokoshkin, S.D.; Korotitskiy, A.V.; Smolin, A.Y. Nanostructured Titanium Alloys and Multicomponent Bioactive Films Mechanical Behavior at Indentation. Mater. Sci. Eng. 2013, 570, 51–62. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Shvyndina, N.V.; Bondarev, A.; Levashov, E.A. Structure and properties of tribological coatings in Cu-B system. Phys. Met. Metal. 2014, 115, 716–722. [Google Scholar] [CrossRef]
- Kiryukhantsev-Korneev, P.V.; Pierson, J.F.; Kuptsov, K.A.; Shtansky, D.V. Hard Cr-Al-Si-B-(N) coatings deposited by reactive and non-reactive magnetron sputtering of CrAlSiB target. Appl. Surf. Sci. 2014, 314, 104–111. [Google Scholar] [CrossRef]
- Musil, J. Hard and superhard nanocomposite coatings. Surf. Coat. Technol. 2000, 125, 322–330. [Google Scholar] [CrossRef]
- Okamoto, S.; Nakazono, Y.; Otsuka, K.; Shimoitani, Y.; Takada, J. Mechanical properties of WC/Co cemented carbide with larger WC grain size. Mater. Charact. 2005, 55, 281–287. [Google Scholar] [CrossRef]
- Ürgen, M.; Çakir, A.F.; Eryilmaz, O.L.; Mitterer, C. Corrosion of zirconium boride and zirconium boron nitride coated steels. Surf. Coat. Technol. 1995, 71, 60–66. [Google Scholar] [CrossRef]
- Srinath, A.; von Fieandt, K.; Lindblad, R.; Fritze, S.; Korvela, M.; Petersson, J.; Lewin, E.; Nyholm, L. Influence of the nitrogen content on the corrosion resistances of multicomponent AlCrNbYZrN coatings. Corros. Sci. 2021, 188, 109557. [Google Scholar] [CrossRef]
- Hsueh, H.-T.; Shen, W.-J.; Tsai, M.-H.; Yeh, J.-W. Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100–xNx. Surf. Coat. Technol. 2012, 206, 4106–4112. [Google Scholar] [CrossRef]
- Mousavi, H.; Khodadadi, J.; Kurdestany, J.M.; Yarmohammadi, Z. Electrical and thermal conductivities of the graphene, boron nitride and silicon boron honeycomb monolayers. Phys. Lett. A 2016, 380, 3823–3827. [Google Scholar] [CrossRef]
- Kameneva, A.; Kichigin, V.; Lobov, N.; Kameneva, N. Data on the effect of structure, elemental and phase composition gradient of nitride multilayer coatings on corrosion protection of different substrates in 3% NaCl and 5% NaOH solutions. Data Brief 2019, 27, 104796. [Google Scholar] [CrossRef]
- Sharma, B.; Thapa, A.; Sarkar, A. Ab-initio study of LD-HfO2, Al2O3, La2O3 and h-BN for application as dielectrics in MTJ memory device. Superlattices Microstruct. 2021, 150, 106753. [Google Scholar] [CrossRef]
- Sarkarat, M.; Lanagan, M.; Ghosh, D.; Lottes, A.; Budd, K.; Rajagopalan, R. Improved thermal conductivity and AC dielectric breakdown strength of silicone rubber/BN composites. Compos. Part C 2020, 2, 100023. [Google Scholar] [CrossRef]
- Kirk, R.E.; Othmer, D.F. Encyclopedia of Chemical Technology, 4th ed.; ACS Publications: Washington, DC, USA, 2001; Volume 4, p. 578. [Google Scholar]
- Thörnberg, J.; Bakhit, B.; Palisaitis, J.; Hellgren, N.; Hultman, L.; Greczynski, G.; Persson, P.O.Å.; Petrov, I.; Rosen, J. Improved oxidation properties from a reduced B content in sputter-deposited TiBx thin films. Surf. Coat. Technol. 2021, 420, 127353. [Google Scholar] [CrossRef]
- Bakhit, B.; Palisaitis, J.; Thörnberg, J.; Rosen, J.; Persson, P.O.Å.; Hultman, L.; Petrov, I.; Greene, J.E.; Greczynski, G. Improving the high-temperature oxidation resistance of TiB2 thin films by alloying with Al. Acta Mater. 2020, 196, 677–689. [Google Scholar] [CrossRef]
- Podobeda, L.G.; Tapsuk, A.K.; Buravov, A.D. Oxidation of boron nitride under nonisothermal conditions. Powder Metall. Met. Ceram. 1976, 15, 696–698. [Google Scholar] [CrossRef]
- Carminati, P.; Jacques, S.; Rebillat, F. Oxidation/corrosion of BN-based coatings as prospective interphases for SiC/SiC composites. J. Eur. Ceram. Soc. 2021, 41, 3120–3131. [Google Scholar] [CrossRef]
№ | Atmosphere | Composition, at.% | Mechanical Properties | f | Vw, × 10−6 mm3N−1m−1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Zr | B | N | H, ΓΠa | E, ΓΠa | H/E | H3/E2, ΓΠa | W, % | ||||
1 | 100%Ar | 24 ± 2 | 76 ± 2 | - | 22 | 342 | 0.064 | 0.091 | 62 | 0.9 | 8.2 |
2 | 85%Ar + 15%N2 | 18 ± 2 | 61 ± 2 | 21 ± 2 | 23 | 266 | 0.086 | 0.172 | 72 | 0.4 | 1.3 |
Sample | Atmosphere | 3.5% NaCl | 1 N H2SO4 | ||
---|---|---|---|---|---|
E, mV | Icorr, µA/cm2 | E, mV | Icorr, µA/cm2 | ||
1 | Ar | −131 | 0.24 | −250 | 8.7 |
2 | Ar + 15%N2 | −47 | 0.07 | −216 | 1.7 |
Substrate WC–6%Co | −39 | 1.15 | −115 | 33.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiryukhantsev-Korneev, P.; Sytchenko, A.; Kaplanskii, Y.; Sheveyko, A.; Vorotilo, S.; Levashov, E. Structure, Corrosion Resistance, Mechanical and Tribological Properties of ZrB2 and Zr-B-N Coatings. Metals 2021, 11, 1194. https://doi.org/10.3390/met11081194
Kiryukhantsev-Korneev P, Sytchenko A, Kaplanskii Y, Sheveyko A, Vorotilo S, Levashov E. Structure, Corrosion Resistance, Mechanical and Tribological Properties of ZrB2 and Zr-B-N Coatings. Metals. 2021; 11(8):1194. https://doi.org/10.3390/met11081194
Chicago/Turabian StyleKiryukhantsev-Korneev, Philipp, Alina Sytchenko, Yuriy Kaplanskii, Alexander Sheveyko, Stepan Vorotilo, and Evgeny Levashov. 2021. "Structure, Corrosion Resistance, Mechanical and Tribological Properties of ZrB2 and Zr-B-N Coatings" Metals 11, no. 8: 1194. https://doi.org/10.3390/met11081194
APA StyleKiryukhantsev-Korneev, P., Sytchenko, A., Kaplanskii, Y., Sheveyko, A., Vorotilo, S., & Levashov, E. (2021). Structure, Corrosion Resistance, Mechanical and Tribological Properties of ZrB2 and Zr-B-N Coatings. Metals, 11(8), 1194. https://doi.org/10.3390/met11081194