Evolution of Microstructure during Isothermal Treatments of a Duplex-Austenitic 0.66C11.4Mn.9.9Al Low-Density Forging Steel and Effect on the Mechanical Properties
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural Evolution in Heat Treatments
3.1.1. Starting Microstructure
3.1.2. Phase Transformation and K-Carbide Precipitation
3.2. K-Carbide Precipitation Kinetic Study
- The precipitation of k-carbides begins at the grain boundaries, mostly austenite-ferrite, and progresses into austenite grains.
- K-carbides form from austenite decomposition into ferrite and k-carbides, resulting in a recognizable eutectoid lamellar structure. In these microstructures, primary and eutectoid ferrite are clearly distinguishable.
- At 750 °C, the precipitation of k-carbides begins after 30 min and ends at about 5 h, when approximately all the austenite has transformed into ferrite and k-carbide.
- For the same holding time, as the temperature decreases, the k-carbide precipitation kinetic slows down.
3.3. Study of the Influence of K-Carbides on the Mechanichal Properties
- Ferrite and austenite formed during water quenching from 1150 °C.
- Ferrite and austenite with an initial precipitation of k-carbides formed at 750 °C for 1 h.
- Ferrite and austenite with a partial transformation of austenite into lamellar ferrite plus k-carbide, formed at 750 °C for 2 h and at 650 and 700 °C for 5 h.
- Ferrite and lamellar ferrite plus k-carbide, formed from the complete transformation of austenite performed at 750 °C for 5 h.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, H.; Suh, D.-W.; Kim, N.J. Fe-Al-Mn-C lightweight structural alloys: A review on the microstructures and mechanical properties. Sci. Technol. Adv. Mater. 2013, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Rana, R.; Haldar, A.; Ray, R.K. Current state of Fe-Mn-Al-C low density steels. Prog. Mater. Sci. 2017, 89, 345–391. [Google Scholar] [CrossRef]
- Frommeyer, G.; Brüx, U. Microstructures and mechanical properties of high strength Fe-Mn-Al-C lightweight triplex steels. Steel Res. Int. 2006, 77, 627–633. [Google Scholar] [CrossRef]
- Rana, R.; Liu, C.; Ray, R.K. Evolution of microstructure and mechanical properties during thermomechanical processing of a low-density multiphase steel for automotive application. Acta Mater. 2014, 75, 227–245. [Google Scholar] [CrossRef]
- Haa, M.C.; Koob, J.-M.; Leeb, J.-K.; Hwanga, S.W.; Parka, K.-T. Tensile deformation of a low density Fe–27Mn–12Al–0.8C duplex steel in association with ordered phases at ambient temperature. Mater. Sci. Eng. A 2013, 586, 276–283. [Google Scholar] [CrossRef]
- Cheng, P.; Li, X.; Yi, H. The k-Carbides in Low-Density Fe-Mn-Al-C Steels: A Review on Their Structure, Precipitation and Deformation Mechanism. Metals 2020, 10, 1021. [Google Scholar] [CrossRef]
- Chin, K.; Lee, H.; Kwak, J.; Kang, J.; Lee, B. Thermodynamic calculation on the stability of (Fe,Mn)3AlC carbide in high aluminum steels. J. Alloys Compd. 2010, 505, 217–223. [Google Scholar] [CrossRef]
- Jiménez, J.A.; Frommeyer, G. The ternary iron aluminum carbides. J. Alloys Compd. 2011, 509, 2729–2733. [Google Scholar] [CrossRef]
- Lu, W.J.; Zhang, X.F.; Qin, R.S. Structure and properties of k-carbides in duplex lightweight steels. Ironmak. Steelmak. 2015, 42, 626–631. [Google Scholar] [CrossRef]
- Grässel, O.; Frommeyer, G. Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–AI steels. Mater. Sci. Technol. 1998, 14, 1213–1217. [Google Scholar]
- Frommeyer, G.; Jiménez, J.A. Structural superplasticity at higher strain rates of hypereutectoid Fe-5.5Al-1Sn-1Cr-1.3C steel. Metall. Mater. Trans. A 2005, 36, 295–300. [Google Scholar] [CrossRef]
- Kim, K.-H.; Lee, J.-S.; Lee, D.-L. Effect of silicon on the spheroidization of cementite in hypereutectoid high carbon chromium bearing steels. Met. Mater. Int. 2010, 16, 871–876. [Google Scholar] [CrossRef]
- Raabe, D.; Springer, H.; Gutierrez-Urrutia, I.; Roters, F.; Bausch, M.; Seol, J.-B.; Koyama, M.; Choi, P.-P.; Tsuzaki, K. Alloy Design, Combinatorial Synthesis, and Microstructure–Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels. JOM 2014, 66, 1845–1856. [Google Scholar] [CrossRef]
- Seol, J.B.; Jung, J.E.; Jang, Y.W.; Park, C.G. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/ε-martensite dual-phase Fe–Mn–C steels. Acta Mater. 2013, 61, 558–578. [Google Scholar] [CrossRef]
- Gutierrez-Urrutia, I.; Raabe, D. Influence of Al content and precipitation state on the mechanical behaviour of austenitic high-Mn low-density steels. Scr. Mater. 2013, 68, 343–347. [Google Scholar] [CrossRef]
- Choi, K.; Seo, C.-H.; Lee, H.; Kim, S.K.; Kwak, J.H.; Chin, K.G.; Park, K.-T.; Kim, N.J. Effect of aging on the microstructure and deformation behaviour of austenite base lightweight Fe–28Mn–9Al–0.8C steel. Scr. Mater. 2010, 63, 1028–1031. [Google Scholar] [CrossRef]
- Kaltzakorta, I.; Gutierrez, T.; Elvira, R.; Guraya, T.; Jimbert, P. Low density steel for forging. Mater. Sci. Forum 2018, 941, 287–291. [Google Scholar] [CrossRef]
- ASTM E562-08. Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar] [CrossRef]
- Cheng, W.C. Phase transformations of an Fe-0.85C-17.9Mn-7.1Al austenitic steel after quenching and annealing. JOM 2014, 66, 1809–1820. [Google Scholar] [CrossRef]
- Song, H.; Yoo, J.; Kim, S.H.; Sohn, S.S.; Koo, M.; Kim, N.J.; Lee, S. Novel ultra-high-strength Cu-containing medium-Mn duplex lightweight steels. Acta Mater. 2017, 135, 215–225. [Google Scholar] [CrossRef]
- Jeong, J.; Lee, C.-Y.; Park, I.-J.; Lee, Y.-K. Isothermal precipitation behaviour of κ-carbide in the Fe–9Mn–6Al–0.15C lightweight steel with a multiphase microstructure. J. Alloys Compd. 2013, 574, 299–304. [Google Scholar] [CrossRef]
- Zhao, C.; Song, R.; Zhang, L.; Yang, F.; Kang, T. Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7C low-density steel. Mater. Des. 2016, 91, 348–360. [Google Scholar] [CrossRef]
- Meng, S.; Sugiyama, S.; Yanagimoto, J. Effects of heat treatment on microstructure and mechanical properties of Cr-V-Mo steel processed by recrystallization and partial melting method. J. Mater. Process. Technol. 2014, 214, 87–96. [Google Scholar] [CrossRef]
- Raabe, D.; Herbig, M.; Sandlöbes, S.; Li, Y.; Tytko, D.; Kuzmina, M.; Ponge, D.; Choi, P.-P. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 2014, 18, 253–261. [Google Scholar] [CrossRef]
QT | HEAT TREATMENT | SAMPLE CODE | Kappa XRD | Kappa (OM, SEM) | |
---|---|---|---|---|---|
Temperature (°C) | Time (h) | ||||
1150 ºC | 750 °C | 0.5 | 750 °C-0.5 h | NO | YES |
1 | 750 °C-1 h | YES | YES | ||
2 | 750 °C-2 h | YES | YES | ||
5 | 750 °C-5 h | YES | YES | ||
700 °C | 2 | 700 °C-2 h | NO | YES | |
5 | 700 °C-5 h | YES | YES | ||
650 °C | 2 | 650 °C-2 h | NO | YES | |
5 | 650 °C-5 h | YES | YES |
HEAT TREATMENT | MECHANICAL PROPERTIES | ||||||
---|---|---|---|---|---|---|---|
QT | ISOTHERMAL | SAMPLE CODE | YS (MPa) | UTS (MPa) | El (%) A30 | TSxEl (GPa) | |
T(°C) | Time(h) | ||||||
1150 °C | QUENCHING | 1150 °C -WQ | 720 | 855 | 22.1 | 18.9 | |
1150 °C | 750 °C | 1 | 750 °C-1 h | 838 | 1041 | 4.7 | 4.9 |
1150 °C | 2 | 750 °C-2 h | 709 | 878 | 4.88 | 4.28 | |
1150 °C | 5 | 750 °C-5 h | 777 | 959 | 2.05 | 1.96 | |
1150 °C | 700 °C | 5 | 700 °C-5 h | 762 | 943 | 3.5 | 3.3 |
1150 °C | 650 °C | 5 | 650 °C-5 h | 803 | 1001 | 1.5 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaltzakorta, I.; Gutierrez, T.; Elvira, R.; Jimbert, P.; Guraya, T. Evolution of Microstructure during Isothermal Treatments of a Duplex-Austenitic 0.66C11.4Mn.9.9Al Low-Density Forging Steel and Effect on the Mechanical Properties. Metals 2021, 11, 214. https://doi.org/10.3390/met11020214
Kaltzakorta I, Gutierrez T, Elvira R, Jimbert P, Guraya T. Evolution of Microstructure during Isothermal Treatments of a Duplex-Austenitic 0.66C11.4Mn.9.9Al Low-Density Forging Steel and Effect on the Mechanical Properties. Metals. 2021; 11(2):214. https://doi.org/10.3390/met11020214
Chicago/Turabian StyleKaltzakorta, Idurre, Teresa Gutierrez, Roberto Elvira, Pello Jimbert, and Teresa Guraya. 2021. "Evolution of Microstructure during Isothermal Treatments of a Duplex-Austenitic 0.66C11.4Mn.9.9Al Low-Density Forging Steel and Effect on the Mechanical Properties" Metals 11, no. 2: 214. https://doi.org/10.3390/met11020214
APA StyleKaltzakorta, I., Gutierrez, T., Elvira, R., Jimbert, P., & Guraya, T. (2021). Evolution of Microstructure during Isothermal Treatments of a Duplex-Austenitic 0.66C11.4Mn.9.9Al Low-Density Forging Steel and Effect on the Mechanical Properties. Metals, 11(2), 214. https://doi.org/10.3390/met11020214