Functional Movement Screening and Paddle-Sport Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Data Collection
2.4. Measures
2.5. Statistical Analysis
3. Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- International Canoe Federation. Canoe marathon competition rules. Available online: http://www.canoeicf.com/rules-and-statutes (accessed on 1 September 2016).
- United States Canoe Association. New England Nationals event map. Available online: http://www.newenglandnationals.org/course/long (accessed on 1 September 2016).
- Ontario Marathon Canoe Kayak Racing Association. Welcome to marathon paddling! Available online: http://www.omckra.com (accessed on 1 September 2016).
- Loudon, J.K.; Parkerson-Mitchell, A.J.; Hildebrand, L.D.; Teague, C. Functional movement screen scores in a group of running athletes. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2014, 28, 909–913. [Google Scholar]
- Victoria State Government. Canoeing and Kayaking—health benefits. Available online: https://www.betterhealth.vic.gov.au/health/healthyliving/canoeing-and-kayaking-health-benefit (accessed on 1 September 2016).
- Almeida, M.O.; Davis, I.S.; Lopes, A.D. Biomechanical Differences of Foot-Strike Patterns During Running: A Systematic Review With Meta-analysis. J. Orthop. Sports Phys. Ther. 2015, 45, 738–755. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.L.; Serna, R.J. Quantitative analysis of kayak paddle technique: Definition of an optimal stroke. Rev. Andal. Med. Deporte 2011, 4, 91–95. [Google Scholar]
- O’Connor, F.G.; Deuster, P.A.; Davis, J.; Pappas, C.G.; Knapik, J.J. Functional movement screening: predicting injuries in officer candidates. Med. Sci. Sports Exerc. 2011, 43, 2224–2230. [Google Scholar] [CrossRef] [PubMed]
- Mokha, M.; Sprague, P.A.; Gatens, D.R. Predicting musculoskeletal injury in National Collegiate Athletic Association Division II Athletes from asymmetries and individual-test versus composite functional movement screen scores. J. Athl. Train. 2016, 51, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Teyhen, D.; Shaffer, S.; Butler, R.; Goffar, S.; Kiesel, K.; Rhon, D.; Plisky, P. What risk factors are associated with musculoskeletal injury in US Army Rangers? A prospective prognostic study. Clin. Orthop. Relat. Res. 2015, 473, 2948–2958. [Google Scholar] [CrossRef] [PubMed]
- Zalai, D.; Panics, G.; Bobak, P.; Csáki, I.; Hamar, P. Quality of functional movement patterns and injury examination in elite-level male professional football players. Acta Physiol. Hung. 2015, 102, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Garrison, M.; Westrick, R.; Johnson, M.; Benenson, J. Association between the functional movement screen and injury development in college athletes. Int. J. Sports Phys. Ther. 2015, 10, 21–28. [Google Scholar] [PubMed]
- Chimera, N.; Smith, C.; Warren, M. Injury history, sex, and performance on the functional movement screen and Y balance test. J. Athl. Train. 2015, 50, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Hotta, T.; Nishiguchi, S.; Fukutani, N.; Tashiro, Y.; Adachi, D.; Morino, S.; Aoyama, T. Functional movement screen for predicting running injuries in 18–24 year-old competitive male runners. J. Strength Cond. Res. 2015, 29, 2808–2815. [Google Scholar] [CrossRef] [PubMed]
- Kiesel, K.; Butler, R.; Plisky, P. Prediction of injury by limited and asymmetrical fundamental movement patterns in American football players. J. Sport Rehabil. 2014, 23, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Bardenett, S.; Micca, J.; DeNoyelles, J.; Miller, S.; Jenk, D.; Brooks, G. Functional movement screen normative values and validity in high school athletes: Can the FMS be used as a predictor of injury? Int. J. Sports Phys. Ther. 2015, 10, 303–308. [Google Scholar] [PubMed]
- Shojaedin, S.; Letafatkar, A.; Hadadnezhad, M.; Dehkhoda, M. Relationship between functional movement screening score and history of injury and identifying the predictive value of the FMS for injury. Int. J. Inj. Control Saf. Promot. 2014, 21, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Mccall, A.; Carling, C.; Nedelec, M.; Davison, M.; Gall, F.; Berthoin, S.; Dupont, G. Risk factors, testing and preventative strategies for non-contact injuries in professional football: Current perceptions and practices of 44 teams from various premier leagues. Br. J. Sports Med. 2014, 48, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Lisman, P.; O’Connor, F.; Deuster, P.; Knapik, J. Functional movement screen and aerobic fitness predict injuries in military training. Med. Sci. Sports Exerc. 2013, 45, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Bulter, R.; Contreras, M.; Burton, L.; Plisky, P.; Goode, A.; Kiesel, K. Modifiable risk factors predict injuries in firefighters during training academies. Work 2013, 46, 11–17. [Google Scholar] [CrossRef]
- Duong, T.T.; Englander, J.; Wright, J.; Cifu, D.X.; Greenwald, B.D.; Brown, A.W. Relationship between strength, balance, and swallowing deficits and outcome after traumatic brain injury: A multicenter analysis. Arch. Phys. Med. Rehabil. 2004, 85, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Burton, L.; Hoogenboom, B. Pre-participation screening: The use of fundamental movements as an assessment of function—Part 1. N. Am. J. Sports Phys. Ther. 2006, 1, 62–72. [Google Scholar] [PubMed]
- Bushman, T.T.; Grier, T.L.; Canham-Chervak, M.; Anderson, M.K.; North, W.J.; Jones, B.H. The Functional Movement Screen and Injury Risk: Association and Predictive Value in Active Men. Am. J. Sports Med. 2016, 44, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Bushman, T.T.; Grier, T.L.; Canham-Chervak, M.C.; Anderson, M.K.; North, W.J.; Jones, B.H. Pain on Functional Movement Screen Tests and Injury Risk. J. Strength Cond. Res. Natl. Strength Cond. Assoc. 2015, 29 (Suppl. 11), S65–S70. [Google Scholar] [CrossRef] [PubMed]
- Krumrei, K.; Flanagan, M.; Bruner, J.; Durall, C. The accuracy of the functional movement screen to identify individuals with an elevated risk of musculoskeletal injury. J. Sport Rehabil. 2014, 23, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, L.A. Validation of Hand-Held Bioelectrical Impedance Analysis for the Assessment of Body Fat in Young and Old Adults. Ph.D. Theses, The University of Wisconsin-Milwaukee, Milwaukee, WI, USA, 2012. Paper 208. [Google Scholar]
- Minick, K.I.; Kiesel, K.B.; Burton, L.; Taylor, A.; Plisky, P.; Butler, R.J. Interrater reliability of the functional movement screen. J. Strength Cond. Res. 2010, 24, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Okada, T.; Huxel, K.C.; Nesser, T.W. Relationship between core stability, functional movement, and performance. J. Strength Cond. Res. 2011, 25, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Jones, J. National Academy of Sports Medicine. Core training concepts. Available online: http://www.thehealthygamer.com/2013/05/31/chapter-9-core-training-concepts/ (accessed on 21 May 2017).
- Abraham, D.; Stepkovitch, N. The Hawkesbury Canoe Classic: Musculoskeletal injury surveillance and risk factors associated with marathon paddling. Wilderness Environ. Med. 2012, 23, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Kameyama, O.; Shibano, K.; Kawakita, H.; Ogawa, R.; Kumamoto, M. Medical check of competitive canoeists. J. Orthop. Sci. Off. J. Jpn. Orthop. Assoc. 1999, 4, 243–249. [Google Scholar] [CrossRef]
- Haley, A.; Nichols, A. A survey of injuries and medical conditions affecting competitive adult outrigger canoe paddlers on O’ahu. Hawaii Med. J. 2009, 68, 162–165. [Google Scholar] [PubMed]
- Hagemann, G.; Rijke, A.M.; Mars, M. Shoulder pathoanatomy in marathon kayakers. Br. J. Sports Med. 2004, 38, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Humphries, B.; Abt, G.A.; Stanton, R.; Sly, N. Kinanthropometric and physiological characteristics of outrigger canoe paddlers. J. Sports Sci. 2000, 18, 395–399. [Google Scholar] [CrossRef] [PubMed]
Variable | Minimum | Maximum | Mean | SD |
---|---|---|---|---|
Age (yrs) | 21 | 94 | 53.96 | 17.37 |
Height (cm) | 156.21 | 193.04 | 173.58 | 8.92 |
Weight (kg) | 55.34 | 115.67 | 75.11 | 12.71 |
BMI (kg/m2) | 20.41 | 32.21 | 24.85 | 2.92 |
Body Fat % | 6.41 | 35.61 | 22.21 | 6.31 |
Finish Time (min) | 119.15 | 169.57 | 135.75 | 13.33 |
Participant Sex | Variable | Minimum | Maximum | Mean | SD |
---|---|---|---|---|---|
Female (n = 15) | Age (yrs) | 23.00 | 76.00 | 50.86 | 17.26 |
Height (cm) | 156.21 | 177.80 | 165.59 | 6.60 | |
Weight (kg) | 55.79 | 85.00 | 63.81 | 7.48 | |
BMI (kg/m2) | 20.40 | 32.20 | 23.72 | 2.98 | |
Body Fat % | 17.01 | 35.61 | 25.86 | 6.47 | |
Finish Time (min) | 119.65 | 154.45 | 133.99 | 11.52 | |
Male (n = 35) | Age (yrs) | 21.00 | 94.00 | 55.14 | 18.02 |
Height (cm) | 160.02 | 193.04 | 176.81 | 7.87 | |
Weight (kg) | 55.34 | 115.67 | 79.78 | 11.88 | |
BMI (kg/m2) | 20.40 | 32.00 | 25.32 | 2.89 | |
Body Fat % | 6.41 | 32.10 | 20.82 | 5.83 | |
Finish Time (min) | 119.15 | 169.57 | 135.98 | 14.27 |
Variable | Mean | SD | Range |
---|---|---|---|
Deep Squat | 1.690 | 0.713 | 0–3 |
Inline Lunge | 1.160 | 0.138 | 0–3 |
Shoulder Mobility | 1.675 | 0.987 | 0–3 |
Hurdle Step | 1.694 | 0.098 | 0–2 |
Straight Leg Raise | 2.408 | 0.609 | 0–2 |
Trunk Stability | 2.082 | 0.073 | 0–3 |
Rotary Stability | 1.898 | 0.073 | 0–3 |
Composite Score | 13.200 | 3.142 | 0–21 |
Variable | Significance | R Value | Z Transformation | 95% CI Lower | 95% CI Upper |
---|---|---|---|---|---|
Inline Lunge Left Leg | 0.045 | 0.346 | 0.361 | 0.089 | 0.583 |
Inline Lunge Right Leg | 0.047 | 0.339 | 0.353 | 0.080 | 0.576 |
Straight Leg Raise Left | 0.041 | 0.348 | 0.363 | 0.092 | 0.584 |
Straight Leg Raise Right | 0.034 | 0.361 | 0.378 | 0.109 | 0.595 |
Straight Leg Raise Total | 0.041 | 0.348 | 0.363 | 0.092 | 0.584 |
Rotary Stability Left | 0.007 | 0.450 | 0.485 | 0.236 | 0.674 |
Rotary Stability Right | 0.003 | 0.490 | 0.536 | 0.301 | 0.710 |
Rotary Stability Total | 0.001 | 0.558 | 0.630 | 0.424 | 0.774 |
Total FMS | 0.015 | 0.407 | 0.432 | 0.172 | 0.635 |
Variable | Significance | R Value | Z Transformation | 95% CI Lower | 95% CI Upper |
---|---|---|---|---|---|
Inline Lunge Left | 0.043 | 0.504 | 0.555 | 0.205 | 0.779 |
Inline Lunge Right | 0.046 | 0.537 | 0.600 | 0.269 | 0.804 |
Inline Lunge Total | 0.039 | 0.485 | 0.53 | 0.171 | 0.764 |
Straight Leg Raise Left | 0.001 | 0.586 | 0.672 | 0.377 | 0.843 |
Straight Leg Raise Right | 0.026 | 0.576 | 0.656 | 0.353 | 0.834 |
Straight Leg Raise Total | 0.017 | 0.586 | 0.672 | 0.377 | 0.843 |
Trunk Stability | 0.030 | 0.311 | 0.322 | 0.083 | 0.635 |
Rotary Stability Left | 0.026 | 0.380 | 0.400 | 0.006 | 0.686 |
Rotary Stability Right | 0.028 | 0.334 | 0.347 | 0.055 | 0.652 |
Rotary Stability Total | 0.047 | 0.356 | 0.372 | 0.027 | 0.668 |
Total FMS | 0.004 | 0.628 | 0.738 | 0.485 | 0.877 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatchett, A.; Allen, C.; St. Hilaire, J.; LaRochelle, A. Functional Movement Screening and Paddle-Sport Performance. Sports 2017, 5, 37. https://doi.org/10.3390/sports5020037
Hatchett A, Allen C, St. Hilaire J, LaRochelle A. Functional Movement Screening and Paddle-Sport Performance. Sports. 2017; 5(2):37. https://doi.org/10.3390/sports5020037
Chicago/Turabian StyleHatchett, Andrew, Charles Allen, Jake St. Hilaire, and Alex LaRochelle. 2017. "Functional Movement Screening and Paddle-Sport Performance" Sports 5, no. 2: 37. https://doi.org/10.3390/sports5020037