Vineyard Design, Cultural Practices and Physical Methods for Controlling Grapevine Pests and Disease Vectors in Europe: A Review
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Selection of the Vineyard Planting Site
3.1. Climatic Conditions
3.2. Soil Characteristics
3.3. Other Habitat Components
4. Host-Plant-Mediated Pest Control
4.1. Choosing Vitis Species or Cultivar to Plant
4.2. How to Grow Grapevines
4.2.1. Fertilization and Irrigation
4.2.2. Training System and Pruning
4.2.3. Harvest Time
5. Interference with Vineyard and Grapevine Colonization by Pests
5.1. Removal of Pests’ Source Plants
5.1.1. Alternative Host Plants
5.1.2. Host Plants of Pests, of Which the Grapevine Is Only a Feeding Host
5.1.3. Overwintering Host Plants for Adults of Pests
5.1.4. Summer Host Plants for Adults of Pests
5.2. Physical Exclusion of Pests
5.3. Diverting Pests from Grapevines
5.3.1. Keeping Pests on Their Herbaceous Hosts
5.3.2. Attracting Pests to Plant Traps or Artificial Devices
6. Direct Pests’ Control
6.1. Collection and Killing of Pests
6.2. Killing Pests by Physical Methods
7. Grapevine Yellows Diseases and Their Associated Vectors
7.1. Selection of Vineyard Planting Site
7.2. Choosing the Grapevine Cultivar to Plant
7.3. Canopy Leaf-Density
7.4. Interference with Vineyard and Grapevine Colonization by Vectors
7.4.1. Removal of Plants’ External Sources of Infectious Vectors
7.4.2. Physical Exclusion of Vectors
7.4.3. Diverting Vectors from Grapevines
7.5. Direct Vector Control
8. Cultural Control vs. Conservation Biological Control
9. Final Consideration
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| BN | bois noir |
| FD | flavescence dorée |
| GYDs | grape yellows diseases |
| GLD | grapevine leafroll disease |
| GLRaV-3 | grapevine leafroll-associated virus 3 |
| GPGV | grapevine Pinot gris virus |
| IPM | Integrated pest management |
References
- Duso, C.; Vettorazzo, E. Mite population dynamics on different grape varieties with or without phytoseiids released (Acari: Phytoseiidae). Exp. Appl. Acarol. 1999, 23, 741–763. [Google Scholar] [CrossRef]
- Duso, C.; Pozzebon, A.; Malagnini, V. Augmentative releases of beneficials in vineyards: Factors affecting predatory mite (Acari: Phytoseiidae) persistence in the long-term period. OILB/SROP Bull. 2006, 29, 215–219. [Google Scholar]
- Lorenzon, M.; Pozzebon, A.; Duso, C.; Ferragut, F. Biological control of spider mites in North-Italian vineyards using pesticide-resistant predatory mites. Acarologia 2018, 58, 98–118. [Google Scholar] [CrossRef]
- Ifoulis, A.A.; Savopoulou-Soultani, M. Biological control of Lobesia botrana (Lepidoptera: Tortricidae) larvae by using different formulations of Bacillus thuringiensis in 11 vine cultivars under field conditions. J. Econ. Entomol. 2004, 97, 340–343. [Google Scholar] [CrossRef]
- Duso, C.; Pozzebon, A.; Lorenzon, M.; Fornasiero, D.; Tirello, P.; Simoni, S.; Bagnoli, B. The impact of microbial and botanical insecticides on grape berry moths and their effects on secondary pests and beneficials. Agronomy 2022, 12, 217. [Google Scholar] [CrossRef]
- Shahini, S.; Kullaj, E.; Çakalli, A.; Çakalli, M.; Lazarevska, S.; Pfeiffer, D.G.; Gumeni, F. Population dynamics and biological control of European grapevine moth (Lobesia botrana: Lepidoptera: Tortricidae) in Albania using different strains of Bacillus thuringiensis. Int. J. Pest Manag. 2010, 56, 281–286. [Google Scholar] [CrossRef]
- Daane, K.M.; Almeida, R.P.P.; Bell, V.A.; Walker, J.T.S.; Botton, M.; Fallahzadeh, M.; Mani, M.; Miano, J.L.; Sforza, R.; Walton, V.M.; et al. Biology and management of mealybugs in vineyards. In Arthropod Management in Vineyards: Pests, Approaches, and Future Directions; Bostanian, N.J., Vincent, C., Isaacs, R., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2012; pp. 271–307. [Google Scholar] [CrossRef]
- Pozzebon, A.; Zanolli, P.; Cristante, A.; Tirello, P.; Silvestri, R.; Zanettin, G.; da Ros, A.; Duso, C. Biological control of the mealybug Planococcus ficus in vineyards of North-eastern Italy. IOBC/WPRS Bull. 2018, 139, 56–59. [Google Scholar]
- Cocco, A.; Pacheco da Silva, V.C.; Benelli, G.; Botton, M.; Lucchi, A.; Lentini, A. Sustainable management of the vine mealybug in organic vineyards. J. Pest Sci. 2020, 94, 153–185. [Google Scholar] [CrossRef]
- Burgio, G.; Magagnoli, S.; Mondini, R.; Guerrieri, E.; Casoli, L.; Profeta, M.; Capponcelli, S.; Castiglioni, A.; Meglioraldi, S.; Mora, M.; et al. Area-wide augmentation of Anagyrus vladimiri and Cryptolaemus montrouzieri enhances biological control of mealybugs in Lambrusco vineyards in Northern Italy. Biol. Control 2025, 206, 105800. [Google Scholar] [CrossRef]
- Lucchi, A.; Bagnoli, B.; Cooper, M.; Ioriatti, I.; Varela, L. The successful use of sex pheromones to monitor and disrupt mating of Lobesia botrana in California. IOBC/WPRS Bull. 2014, 99, 45–48. [Google Scholar]
- Ioriatti, C.; Lucchi, A. Semiochemical strategies for tortricid moth control in apple orchards and vineyards in Italy. J. Chem. Ecol. 2016, 42, 571–583. [Google Scholar] [CrossRef]
- Benelli, G.; Lucchi, A.; Anfora, G.; Bagnoli, B.; Botton, M.; Campos-Herrera, R.; Carlos, C.; Daugherty, M.P.; Gemeno, C.; Harari, A.R.; et al. European grapevine moth, Lobesia botrana Part II: Prevention and management. Entomol. Gen. 2023, 43, 281–304. [Google Scholar] [CrossRef]
- Cocco, A.; Lentini, A.; Serra, G. Mating disruption of Planococcus ficus (Hemiptera: Pseudococcidae) in vineyards using reservoir pheromone dispensers. J. Insect Sci. 2014, 14, 144. [Google Scholar] [CrossRef]
- Daane, K.M.; Yokota, G.Y.; Walton, V.M.; Hogg, B.N.; Cooper, M.L.; Bentley, W.J.; Millar, J.G. Development of a mating disruption program for a mealybug, Planococcus ficus, in vineyards. Insects 2020, 11, 635. [Google Scholar] [CrossRef] [PubMed]
- Mercer, N.H.; Lowrimore, J.C.; McGhee, P.S.; Martin, T.R.; Cloonan, K.R.; Daane, K.M. Novel dispensers and variable deployment rates for mating disruption of a vineyard mealybug, Planococcus ficus. Crop Prot. 2023, 169, 106245. [Google Scholar] [CrossRef]
- Tacoli, F.; Mori, N.; Pozzebon, A.; Cargnus, E.; Da Vià, S.; Zandigiacomo, P.; Duso, C.; Pavan, F. Control of Scaphoideus titanus with natural products in organic vineyards. Insects 2017, 8, 129. [Google Scholar] [CrossRef]
- Tacoli, F.; Bell, V.A.; Cargnus, E.; Pavan, F. Insecticidal activity of natural products against vineyard mealybugs (Hemiptera: Pseudococcidae). Crop Prot. 2018, 111, 50–57. [Google Scholar] [CrossRef]
- Prazaru, S.C.; D’Ambrogio, L.; Dal Cero, M.; Rasera, M.; Cenedese, G.; Guerrieri, E.; Pavasini, M.; Mori, N.; Pavan, F.; Duso, C. Efficacy of conventional and organic insecticides against Scaphoideus titanus: Field and semi-field trials. Insects 2023, 14, 101. [Google Scholar] [CrossRef] [PubMed]
- Dent, D. Insect Pest Management; CABI Publishing: Ascot, UK, 2000. [Google Scholar]
- Thacker, J.R.M. An Introduction to Arthropod Pest Control; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Vincent, C.; Hallman, G.; Panneton, B.; Fleurat-Lessard, F. Management of agricultural insects with physical control methods. Annu. Rev. Entomol. 2003, 48, 261–281. [Google Scholar] [CrossRef]
- Gullan, P.J.; Cranston, P.S. Insects: An Outline of Entomology; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Robinet, C.; Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 2010, 5, 132–142. [Google Scholar] [CrossRef]
- Lehmann, P.; Ammunét, T.; Barton, M.; Battisti, A.; Eigenbrode, S.D.; Jepsen, J.U.; Kalinkat, G.; Neuvonen, S.; Niemelä, P.; Terblanche, J.S.; et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 2020, 18, 141. [Google Scholar] [CrossRef]
- Schvester, D.; Moutous, G.; Bonfilis, J.; Carle, P. Étude biologique des cicadelles de la vigne dans le sud-ouest de la France. Ann. Épiphyties 1962, 13, 205–237. [Google Scholar]
- Vidano, C. Alterazioni provocate da insetti in Vitis osservate, sperimentate e comparate. Ann. Fac. Sci. Agrar. Univ. Torino 1963, 1, 513–644. [Google Scholar]
- Carle, P.; Moutous, G. Observation sur le mode de nutrition sur vigne de quatre espèces de cicadelles. Ann. Epiphyt. 1965, 16, 333–354. [Google Scholar]
- Baggiolini, M.; Canevascini, V.; Tencalla, Y.; Caccia, R.; Sobrio, G.; Cavalli, S. La cicadelle verte, Empoasca flavescens F. (Homopt., Typhlocybidae), agent d’alterations foliaires sur vigne. Rech. Agron. Suisse 1968, 7, 43–69. [Google Scholar]
- Candolfi, M.P.; Jermini, M.; Carrera, E.; Candolfi-Vasconcelos, M.C. Grapevine leaf gas exchange, plant growth, yield, fruit quality and carbohydrate reserves influenced by the grape leafhopper, Empoasca vitis. Entomol. Exp. Appl. 1993, 69, 289–296. [Google Scholar] [CrossRef]
- Moutous, G.; Fos, A. Essais de lutte chimique contre la Cicadelle de la Vigne Empoasca flavescens Fabr. Résultats 1970. Rev. Zool. Agric. Pathol. Végét. 1971, 70, 48–56. [Google Scholar]
- Pavan, F.; Stefanelli, G.; Villani, A.; Gasparinetti, P.; Colussi, G.; Mucignat, D.; Del Cont Bernard, D.; Mutton, P. Danni da Empoasca vitis (Göthe) (Homoptera: Cicadellidae) in vigneti dell’Italia nord-orientale e soglie d’intervento. Frustula Entomol. 2000, 21, 109–124. [Google Scholar]
- Lehmann, F.; Schirra, K.-J.; Lovis, F.; Zebitz, C.P.W. The green leafhopper Empoasca vitis Goethe—population dynamics in different zones of foliation and effects of insecticide treatments in vineyards. IOBC/WPRS Bull. 2001, 24, 231–235. [Google Scholar]
- Pavan, F.; Pavanetto, E.; Duso, C.; Girolami, V. Population dynamics of Empoasca vitis (Goethe) and Zygina rhamni (Ferr.) on vines in northern Italy. In Proceedings of the 6th Auchenorrhyncha Meeting, Turin, Italy, 7–11 September 1987; Vidano, C., Arzone, A., Eds.; CNR-IPRA: Turin, Italy, 1988; pp. 517–524. [Google Scholar]
- Böll, S.; Herrmann, J.V. A long-term study on the population dynamics of the grape leafhopper (Empoasca vitis) and antagonist mymarid species. J. Pest Sci. 2004, 77, 33–42. [Google Scholar] [CrossRef]
- Duso, C.; Mori, N.; Pozzebon, A.; Marchesini, E.; Girolami, V. Problemi, tendenze e innovazioni nel contenimento degli artropodi dannosi alla vite. I. Tignole e cicaline. Prot. Colt. 2010, 3, 15–24. [Google Scholar]
- Vidano, C. La Empoasca lybica Bergevin nuovo nemico della vite in Italia. Ital. Agric. 1962, 99, 329–346. [Google Scholar]
- Lentini, A.; Delrio, G.; Serra, G. Observations on the infestations of Jacobiasca lybica on grapevine in Sardinia. Bull. OILB/SROP 2000, 23, 127–129. [Google Scholar]
- Tsolakis, H.; Ragusa, E. Grapevine pests in Sicily. IOBC/WPRS Bull. 2008, 36, 355–361. [Google Scholar]
- Dongiovanni, C.; Carrieri, M.; Altamura, G.; Delle Donne, A.G.; Sumerano, P.; Cavalieri, V. Insetti invasivi in Puglia, serve un monitoraggio costante. Inf. Agrar. 2023, 79, 54–57. [Google Scholar]
- Nuzzaci, G. Nota morfo-biologica sull’ Eulecanium corni (Bouchè) ssp. apuliae nov. Entomologica 1969, 5, 9–36. [Google Scholar]
- Ciampolini, M.; Guarnone, A. Pullulazioni su vigneti di Parthenolecanium corni. Inf. Agrar. 2003, 59, 81–85. [Google Scholar]
- Girolami, V.; Duso, C.; Refatti, E.; Osler, R. Lotta Integrate in Viticoltura. le Malattie Ddella Vite; Iripa-Coldiretti: Mestre, Italy, 1989. [Google Scholar]
- Galet, P. Les Maladies et les Parasites de la Vigne. In Tome II. les Parasites Animaux; Paysan du Midi: Montpellier, France, 1982. [Google Scholar]
- Roehrich, R.; Böller, E. Tortricids in vineyards. In Tortricid Pests: Their Biology, Natural Enemies and Control; Van der Geest, L.P.S., Evenhuis, H.H., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; pp. 507–514. [Google Scholar]
- Coscollà, R. La polilla del Racimo de la Vid (Lobesia botrana Den. y Schiff.); Generalitat Valenciana: Valencia, Spain, 1997. [Google Scholar]
- Benelli, G.; Lucchi, A.; Anfora, G.; Bagnoli, B.; Botton, M.; Campos-Herrera, R.; Carlos, C.; Daugherty, M.P.; Gemeno, C.; Harari, A.R.; et al. European grapevine moth, Lobesia botrana Part I: Biology and ecology. Entomol. Gen. 2023, 43, 261–280. [Google Scholar] [CrossRef]
- Roehrich, R. Recherches sur la nuisibilité de Eupoecilia ambiguella Hb. et Lobesia botrana Den. et Schiff. Déf. Vég. 1978, 191, 106–124. [Google Scholar]
- Pavan, F.; Girolami, V.; Sacilotto, G. Second generation of grape berry moths, Lobesia botrana (Den. & Schiff.) (Lep., Tortricidae) and Eupoecilia ambiguella (Hb.) (Lep., Cochylidae): Spatial and frequency distributions of larvae, weight loss and economic injury level. J. Appl. Entomol. 1998, 122, 361–368. [Google Scholar] [CrossRef]
- Pavan, F.; Bigot, G.; Cargnus, E.; Zandigiacomo, P. Influence of the carpophagous generations of the European grapevine moth Lobesia botrana on grape bunch rots. Phytoparasitica 2014, 42, 61–69. [Google Scholar] [CrossRef]
- Moschos, T. Yield loss quantification and assessment of economic injury level for the anthophagous generation of the European grapevine moth Lobesia botrana Den. et Schiff. (Lepidoptera: Tortricidae). Int. J. Pest Manag. 2005, 51, 81–89. [Google Scholar] [CrossRef]
- Moschos, T. Yield loss quantification and economic injury level estimation for the carpophagous generations of the European grapevine moth Lobesia botrana Den. et Schiff. (Lepidoptera: Tortricidae). Int. J. Pest Manag. 2006, 52, 141–147. [Google Scholar] [CrossRef]
- Bovey, P. Super–famille des Tortricoidea. In Entomologie Appliquée à L’agriculture, Tome 2. Lépidoptères; Balachowsky, A.S., Ed.; Masson et Cie: Paris, France, 1966; Volume 1, pp. 456–893. [Google Scholar]
- Marchesini, E.; Dalla Montà, L. Nel Veneto quattro generazioni di tignoletta della vite. Inf. Agrar. 2004, 60, 75–78. [Google Scholar]
- Pavan, F.; Zandigiacomo, P.; Dalla Montà, L. Influence of the grape-growing area on the phenology of Lobesia botrana second generation. Bull. Insectol. 2006, 59, 105–109. [Google Scholar]
- Pavan, F.; Floreani, C.; Barro, P.; Zandigiacomo, P.; Dalla Montà, L. Occurrence of two different development patterns in Lobesia botrana (Lepidoptera: Tortricidae) larvae during the second generation. Agric. For. Entomol. 2013, 15, 398–406. [Google Scholar] [CrossRef]
- Martin-Vertedor, D.; Ferrero-Garcia, J.J.; Torres-Vila, L.M. Global warming affects phenology and voltinism of Lobesia botrana in Spain. Agric. For. Entomol. 2010, 12, 169–176. [Google Scholar] [CrossRef]
- Caffarra, A.; Rinaldi, M.; Eccel, E.; Rossi, V.; Pertot, I. Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agric. Ecosyst. Environ. 2012, 148, 89–101. [Google Scholar] [CrossRef]
- Svobodová, E.; Trnka, M.; Dubrovský, M.; Semerádová, D.; Eitzinger, J.; Štěpánek, P.; Žalud, Z. Determination of areas with the most significant shift in persistence of pests in Europe under climate change. Pest Manag. Sci. 2012, 70, 708–715. [Google Scholar] [CrossRef]
- Reineke, A.; Thiéry, D. Grapevine insect pests and their natural enemies in the age of global warming. J. Pest Sci. 2016, 89, 313–328. [Google Scholar] [CrossRef]
- Castex, V.; García de Cortázar-Atauri, I.; Calanca, P.; Beniston, M.; Moreau, J. Assembling and testing a generic phenological model to predict Lobesia botrana voltinism for impact studies. Ecol. Model. 2020, 420, 108982. [Google Scholar] [CrossRef]
- Ioriatti, C.; Anfora, G.; Bagnoli, B.; Benelli, G.; Lucchi, A. A review of history and geographical distribution of grapevine moths in Italian vineyards in light of climate change: Looking backward to face the future. Crop Prot. 2023, 173, 106375. [Google Scholar] [CrossRef]
- González-Domínguez, E.; Caffi, T.; Ciliberti, N.; Rossi, V. A mechanistic model of Botrytis cinerea on grapevines that includes weather, vine growth stage, and the main infection pathways. PLoS ONE 2015, 10, e0140444. [Google Scholar] [CrossRef]
- Tremblay, E. Entomologia Applicata. Volume II. Parte II; Liguori Editore: Napoli, Italy, 1986; p. 381. [Google Scholar]
- Pucci, C.; Dominici, M. Biological notes and cyclical outbreaks of Theresimima ampelophaga Bayle-Barelle (Lep., Zygaenidae). J. Appl. Entomol. 1986, 101, 479–491. [Google Scholar] [CrossRef]
- Pollini, A. Manuale di Entomologia Applicata; Edagricole: Bologna, Italy, 1998. [Google Scholar]
- Lucchi, A. Note di Entomologia Viticola; Pisa University Press: Pisa, Italy, 2014. [Google Scholar]
- Thangasamy, N.K.; De Fazi, L.; Ricciardi, R.; Canale, A.; Benelli, G.; Lucchi, A. Theresimima ampellophaga (Bayle-Barelle, 1809) (Lepidoptera: Zygaenidae: Procridinae): Past, present, and future of an overlooked vine pest. Crop Prot. 2025, 189, 107043. [Google Scholar] [CrossRef]
- Mazzaro, S. Attacchi di Theresimima ampelophaga nel Trevigiano e diagnosi precoce delle infestazioni. Inf. Agrar. 1989, 45, 70–74. [Google Scholar]
- Duso, C.; Pozzebon, A.; Kreiter, S.; Tixier, M.-S.; Candolfi, M.P. Management of phytophagous mites in European vineyards. In Arthropod Management in Vineyards: Pests, Approaches, and Future Directions; Bostanian, N.J., Vincent, C., Isaacs, R., Eds.; Springer: New York, NY, USA, 2012; pp. 191–217. [Google Scholar] [CrossRef]
- Zangheri, S.; Masutti, L. Osservazioni e considerazioni sul problema degli acari della vite nelle Venezie. Riv. Vitic. Enol. Conegliano 1962, 15, 75–89. [Google Scholar]
- Granett, J.; Walker, M.A.; Kocsis, L.; Omer, A.D. Biology and management of grape phylloxera. Annu. Rev. Entomol. 2001, 46, 387–412. [Google Scholar] [CrossRef] [PubMed]
- Goidanich, A. Fillossera della vite. In Enciclopedia Agraria Italiana; REDA: Roma, Italy, 1960; Volume 4, pp. 682–698. [Google Scholar]
- Benheim, D.; Rochfort, S.; Robertson, E.; Potter, D.; Powell, K.S. Grape phylloxera (Daktulosphaira vitifoliae)—A review of potential detection and alternative management options. Ann. Appl. Biol. 2012, 161, 95–115. [Google Scholar] [CrossRef]
- Agazzi, G.; Mutton, P. Anomala infestazione di Anomala vitis in Friuli occidentale. Not. ERSA 2001, 14, 16–18. [Google Scholar]
- Castaldi, R.; Castellari, A. Maggiolino in giovani vigneti, le possibilità di difesa. Inf. Agrar. 2010, 66, 74. [Google Scholar]
- Lucchi, A.; Botton, M.; Bagnoli, B. Tignola rigata su vite da tenere sotto controllo. Inf. Agrar. 2011, 67, 65–69. [Google Scholar]
- Lucchi, A.; Ricciardi, R.; Benelli, G.; Bagnoli, B. What do we really know on the harmfulness of Cryptoblabes gnidiella (Millière) to grapevine? From ecology to pest management. Phytoparasitica 2019, 47, 1–15. [Google Scholar] [CrossRef]
- Bagnoli, B.; Lucchi, A. Bionomics of Cryptoblabes gnidiella (Millière) (Pyralidae: Phycitinae) in Tuscan vineyards. IOBC/WPRS Bull. 2001, 24, 79–84. [Google Scholar]
- Harari, A.R.; Zahavi, T.; Gordon, D.; Anshelevich, L.; Harel, M.; Ovadia, S.; Dunkelblum, E. Pest management programmes in vineyards using male mating disruption. Pest Manag. Sci. 2007, 63, 769–775. [Google Scholar] [CrossRef]
- Alma, A.; Arzone, A. Nemici animali della vite. Quaderni della Scuola di Specializzazione in Viticoltura ed Enologia 1995, 19, 33–46. [Google Scholar]
- Lucin, R.; Ghidoni, F. Nottue. Noctua spp. In Manuale di Viticoltura; Bottura, M., Ed.; Fondazione Edmund Mach: San Michele all’Adige, Italy, 2011; pp. 66–67. [Google Scholar]
- Cini, A.; Ioriatti, C.; Anfora, G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectol. 2012, 65, 149–160. [Google Scholar]
- Kehrli, P.; Richoz, P.; Linde, C.; Baroffio, C. The importance of Drosophila suzukii for grapevine production. IOBC/WPRS Bull. 2014, 105, 211–218. [Google Scholar]
- Marchesini, E.; Mori, N.; Aldrighetti, F. Drosophila suzukii (Matsumura): A new pest of grape in Veneto Region (north-east Italy). IOBC/WPRS Bull. 2014, 105, 229–232. [Google Scholar]
- Mori, N.; Marchesini, E. Presenza di Drosophila suzukii su uve in fruttai nel Veronese. Inf. Agrar. 2014, 70, 53–56. [Google Scholar]
- Mori, N.; Vincenzi, S.; Marchesini, E.; Curioni, A.; Duso, C. The effect of Drosophila suzukii attack during grape drying process in Veneto region (north-eastern Italy). IOBC/WPRS Bull. 2014, 105, 225–228. [Google Scholar]
- Ioriatti, C.; Walton, V.; Dalton, D.; Anfora, G.; Grassi, A.; Maistri, S.; Mazzoni, V. Drosophila suzukii (Diptera: Drosophilidae) and its potential impact to wine grapes during harvest in two cool climate wine grape production regions. J. Econ. Entomol. 2015, 108, 1148–1155. [Google Scholar] [CrossRef]
- Ioriatti, C.; Guzzon, R.; Anfora, G.; Ghidoni, F.; Mazzoni, V.; Villegas, T.R.; Dalton, D.T.; Walton, V.M. Drosophila suzukii (Diptera: Drosophilidae) contributes to the development of sour rot in grape. J. Econ. Entomol. 2018, 111, 283–292. [Google Scholar] [CrossRef]
- Shrader, M.E.; Burrack, H.J.; Pfeiffer, D.G. Drosophila suzukii (Diptera: Drosophilidae) oviposition and adult emergence in six wine grape varieties grown in Virginia. J. Econ. Entomol. 2019, 112, 139–148. [Google Scholar] [CrossRef]
- Marchesini, E.; Mori, N. Presenza di Drosophila suzukii in vigneti del Veronese. Inf. Agrar. 2014, 70, 56–60. [Google Scholar]
- Fornasiero, D.; Pavan, F.; Pozzebon, A.; Picotti, P.; Duso, C. Relative infestation level and sensitivity of grapevine cultivars to the leafhopper Empoasca vitis (Hemiptera: Cicadellidae). J. Econ. Entomol. 2016, 109, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Pavan, F.; Picotti, P. Influence of grapevine cultivars on the leafhopper Empoasca vitis and its egg parasitoids. BioControl 2009, 54, 55–63. [Google Scholar] [CrossRef]
- Duso, C. Indagini bioecologiche su Planococcus ficus (Sign.) nel Veneto. Boll. Lab. Entomol. Agrar. Filippo Silvestri 1989, 46, 3–20. [Google Scholar]
- Lentini, A.; Serra, G.; Ortu, S.; Delrio, G. Seasonal abundance and distribution of Planococcus ficus on grapevine in Sardinia. IOBC/WPRS Bull. 2008, 36, 267–272. [Google Scholar]
- Naegele, R.P.; Cousins, P.; Daane, K.M. Identification of Vitis cultivars, rootstocks, and species expressing resistance to a Planococcus mealybug. Insects 2020, 11, 86. [Google Scholar] [CrossRef]
- Tsai, C.-W.; Chau, J.; Fernandez, L.; Bosco, D.; Daane, K.M.; Almeida, R.P.P. Transmission of Grapevine leafroll-associated virus 3 by the vine mealybug (Planococcus ficus). Phytopathology 2008, 98, 1093–1098. [Google Scholar] [CrossRef]
- Bertin, S.; Pacifico, D.; Cavalieri, V.; Marzachì, C.; Bosco, D. Transmission of Grapevine virus A and Grapevine leafroll-associated viruses 1 and 3 by Planococcus ficus and Planococcus citri fed on mixed-infected plants. Ann. Appl. Biol. 2016, 169, 53–73. [Google Scholar] [CrossRef]
- Pietersen, G.; Spreeth, N.; Oosthuizen, T.; van Rensburg, A.; van Rensburg, M.; Lottering, D.; Rossouw, N.; Tooth, D. Control of grapevine leafroll disease spread at a commercial wine estate in South Africa: A case study. Am. J. Enol. Vitic. 2013, 64, 296–305. [Google Scholar] [CrossRef]
- Cabaleiro, C.; Pesqueira, A.M.; Segura, A. Planococcus ficus and the spread of grapevine leafroll disease in vineyards: A 30-year-long case study in north-West Spain. Eur. J. Plant Pathol. 2022, 163, 733–747. [Google Scholar] [CrossRef]
- Geisler, G. Untersuchungen zur Resistenzzüchtung gegen “Heuwurm”-Befall bei Reben. Vitis 1959, 2, 84–100. [Google Scholar]
- Pavan, F.; Stefanelli, G.; Cargnus, E.; Villani, A. Assessing the influence of inflorescence traits on the susceptibility of grape to vine moths. J. Appl. Entomol. 2009, 133, 394–401. [Google Scholar] [CrossRef]
- Sharon, R.; Zahavi, T.; Soroker, V.; Harari, A.R. The effect of grape vine cultivars on Lobesia botrana (Lepidoptera: Tortricidae) population levels. J. Pest Sci. 2009, 82, 187–193. [Google Scholar] [CrossRef]
- Pavan, F.; Stefanelli, G.; Villani, A.; Cargnus, E. Influence of grapevine cultivar on the second generations of Lobesia botrana and Eupoecilia ambiguella. Insects 2018, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Corsi, L.; Sperandio, G.; Ruschioni, S.; Ramilli, F.; Lattanzi, T.; Silvestroni, O.; Riolo, P. Lobesia botrana infestation in Petit Verdot and Sangiovese: A comparative study. Insects 2025, 16, 213. [Google Scholar] [CrossRef]
- Gabel, B.; Roehrich, R. Sensitivity of grapevine phenological stages to larvae of European grapevine moth, Lobesia botrana Den. et Schiff. (Lep., Tortricidae). J. Appl. Entomol. 1995, 119, 127–130. [Google Scholar] [CrossRef]
- Fermaud, M. Cultivar susceptibility of grape berry clusters to larvae of Lobesia botrana (Lepidoptera: Tortricidae). J. Econ. Entomol. 1998, 91, 974–980. [Google Scholar] [CrossRef]
- Moreau, J.; Rahme, J.; Benrey, B.; Thiéry, D. Larval host plant origin modifies the adult oviposition preference of the female European grapevine moth Lobesia botrana. Naturwissenschaften 2008, 95, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Birguücuü, A.K.; Turanlı, F.; Guümuüş, E.; Guüzel, B.; Karsavuran, Y. The effect of grape cultivars on oviposition preference and larval survival of Lobesia botrana Den. & Schiff. (Lepidoptera: Tortricidae). Fresenius Environ. Bull. 2015, 24, 33–38. [Google Scholar]
- Maher, N.; Thiéry, D. A bioassay to evaluate the activity of the chemical stimuli from grape berries on the oviposition of Lobesia botrana (Lepidoptera: Tortricidae). Bull. Entomol. Res. 2004, 94, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Varner, M.; Mattedi, L. Le tignole nella Piana Rotaliana. Inf. Agrar. 2004, 60, 63–69. [Google Scholar]
- Pavan, F.; Sbrissa, F. Dannosità delle tignole della vite, Lobesia botrana (Den. e Schiff.) ed Eupoecilia ambiguella (Hb.), su cultivar a maturazione tardiva nell’Italia nord-orientale. Frustula Entomol. 1994, 17, 43–53. [Google Scholar]
- Pavan, F.; Sbrissa, F. Soglie economiche di danno per la seconda generazione delle tignole della vite basate sulla perdita in peso. Frustula Entomol. 1999, 20, 18–26. [Google Scholar]
- Pavan, F.; Girolami, V.; Cecchini, A.; Turbian, E. Evoluzione dei danni delle tignole della vite, Lobesia botrana (Den. e Schiff.) ed Eupoecilia ambiguella (Hb.), nell’Italia nord orientale e lotta insetticida. Redia 1993, 76, 417–431. [Google Scholar]
- Baser, N.; Broutou, O.; Verrastro, V.; Porcelli, F.; Ioriatti, C.; Anfora, G.; Mazzoni, V.; Rossi Stacconi, M.V. Susceptibility of table grape varieties grown in south-eastern Italy to Drosophila suzukii. J. Appl. Entomol. 2018, 142, 465–472. [Google Scholar] [CrossRef]
- Zangheri, S.; Pellizzari Scaltriti, G. Parassitologia Animale dei Vegetali; CLEUP: Padova, Italy, 1988. [Google Scholar]
- AAVV. Maladies et Ravageurs de Nos Vignobles; AMTRA: Nyon, Switzerland, 1999. [Google Scholar]
- Candolfi, M.P.; Wermelinger, B.; Boller, E.F. Photosynthesis and transpiration of “Riesling × Sylvaner” grapevine leaves as affected by European red mite (Panonychus ulmi Koch) (Acari: Tetranychidae) feeding. J. Appl. Entomol. 1993, 115, 233–239. [Google Scholar] [CrossRef]
- Van de Vrie, M.; Delver, P. Nitrogen fertilization of fruit trees and its consequences for the development of Panonychus ulmi populations and the growth of fruit trees. In Recent Advances in Acarology, Volume I; Academic Press: New York, NY, USA, 1979; pp. 23–30. [Google Scholar]
- Borgo, M.; Giorgessi, F. Effetti della termoregolazione estiva mediante acqua su Panonychus ulmi Koch. Riv. Vitic. Enol. Conegliano 1987, 40, 45–52. [Google Scholar]
- Chaboussou, F. Le conditionnement physiologique de la vigne et la multiplication des Cicadelles. Rev. Zool. Agric. Pathol. Végétale 1971, 70, 57–66. [Google Scholar]
- Decante, D.; van Leeuwen, C.; van Helden, M. Influence of plot characteristics and surrounding vegetation on the intra-plot spatial distribution of Empoasca vitis. Agric. For. Entomol. 2009, 11, 377–388. [Google Scholar] [CrossRef]
- Fornasiero, D.; Duso, C.; Pozzebon, A.; Tomasi, D.; Gaiotti, F.; Pavan, F. Effects of irrigation on the seasonal abundance of Empoasca vitis in north-Italian vineyards. J. Econ. Entomol. 2012, 105, 176–185. [Google Scholar] [CrossRef]
- Cocco, A.; Marras, P.M.; Muscas, E.; Mura, A.; Lentini, A. Variation of life-history parameters of Planococcus ficus (Hemiptera: Pseudococcidae) in response to grapevine nitrogen fertilization. J. Appl. Entomol. 2015, 139, 519–528. [Google Scholar] [CrossRef]
- Muscas, E.; Cocco, A.; Mura, A.; Lentini, A.; Mercenaro, L.; Nieddu, G. Influence of cover crop management systems on the development of the vine mealybug, Planococcus ficus, in a Mediterranean vineyard. IOBC/WPRS Bull. 2017, 128, 94–101. [Google Scholar]
- Vartholomaiou, A.N.; Navrozidis, E.I.; Payne, C.C.; Salpiggidis, G.A. Agronomic techniques to control Lobesia botrana. Phytoparasitica 2008, 36, 264–271. [Google Scholar] [CrossRef]
- Mundy, D.C. A review of the direct and indirect effects of nitrogen on botrytis bunch rot in wine grapes. N. Z. Plant Prot. 2008, 61, 306–310. [Google Scholar] [CrossRef]
- Duso, C.; de Lillo, E. Grape. In Eriophyoid Mites—Their Biology, Natural Enemies and Control; World Crop Pests; Lindquist, E.E., Sabelis, M.W., Bruin, J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 6, pp. 571–582. [Google Scholar] [CrossRef]
- Malagnini, V.; de Lillo, E.; Saldarelli, P.; Beber, R.; Duso, C.; Raiola, A.; Zanotelli, L.; Valenzano, D.; Giampetruzzi, A.; Morelli, M.; et al. Transmission of grapevine Pinot gris virus by Colomerus vitis (Acari: Eriophyidae) to grapevine. Arch. Virol. 2016, 161, 2595–2599. [Google Scholar] [CrossRef]
- Volkova, M.; Volkov, Y. Mechanisms to control grape erineum mite Colomerus vitis Pgst. in organic, biodynamic and traditional vineyards of the Crimea. BIO Web Conf. 2021, 39, 20. [Google Scholar] [CrossRef]
- Prazaru, S.C.; dal Mas, G.; Padoin, M.; Rizzardo, D.; Meggio, F.; Pitacco, A.; Pozzebon, A.; Duso, C. Effect of leaf removal and insecticide applications on population densities of leafhoppers and mites associated with grapevines. Insects 2023, 14, 791. [Google Scholar] [CrossRef] [PubMed]
- Tacoli, F.; Pavan, F.; Cargnus, E.; Tilatti, E.; Pozzebon, A.; Zandigiacomo, P. Efficacy and mode of action of kaolin in the control of Empoasca vitis and Zygina rhamni (Hemiptera: Cicadellidae) in vineyards. J. Econ. Entomol. 2017, 110, 1164–1178. [Google Scholar] [CrossRef] [PubMed]
- Geiger, C.A.; Daane, K.M. Seasonal movement and distribution of the grape mealybug (Homoptera: Pseudococcidae): Developing a sampling program for San Joaquin Valley vineyards. J. Econ. Entomol. 2001, 94, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Moleas, T. Le tignole della vite: Notizie bioetologiche e tecniche di controllo. In La Difesa della Vite dagli Artropodi Dannosi; Ragusa, S., Tsolokis, H., Eds.; Università degli Studi di Palermo: Palermo, Italy, 2006; pp. 85–96. [Google Scholar]
- Birgücü, A.K.; Turanli, F.; Gümüş, E.; Güzel, B.; Karsavuran, Y. The effect of trellis system on some performances of Lobesia botrana Den. & Schiff. (Lepidoptera: Tortricidae). Ziraat Fakültesi Derg.—Süleyman Demirel Üniversitesi 2014, 9, 111–117. [Google Scholar]
- Pavan, F.; Cargnus, E.; Kiaeianmoosavi, S.; Bigot, G.; Tacoli, F.; Zandigiacomo, P. Bunch-zone leaf removal to prevent damage by Lobesia botrana and grey mould. Bull. Insectol. 2016, 69, 107–115. [Google Scholar]
- Van Steenwyk, R.A.; Novotny, L.M.; Thayer, L. Control of European grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae) under two different grape trellising systems. IOBC/WPRS Bull. 2014, 105, 61–68. [Google Scholar]
- Pavan, F.; Sacilotto, G.; Girolami, V. Damage evolution, larval sampling and treatment period for grape moths. In Proceedings of the EC Experts’ Group “Integrated Pest Control in Viticulture”; Cavalloro, R., Ed.; A.A. Balkema: Rotterdam, The Netherlands, 1987; pp. 39–49. [Google Scholar]
- Malagnini, V.; Navajas, M.; Migeon, A.; Duso, C. Differences between sympatric populations of Eotetranychus carpini collected from Vitis vinifera and Carpinus betulus: Insights from host-switch experiments and molecular data. Exp. Appl. Acarol. 2012, 56, 209–219. [Google Scholar] [CrossRef]
- Laccone, G.; Guario, A.; La Notte, F.; Merlino, S. Prove di lotta contro il tripide della vite (Drepanothrips reuteri Uzel.). Atti Giorn. Fitopatol. 1988, 2, 111–120. [Google Scholar]
- Guastamacchia, F.; Lasorella, V.; Lopolito, P.; Tauro, G.; Bitonte, D.; Pagnani, M.; Guarnone, A. Prove di lotta con acetamiprid, azadiractina ed etofenprox da soli ed in strategia nel controllo dei tripidi su uva da tavola. Atti Giorn. Fitopatol. 2022, 1, 97–104. [Google Scholar]
- Pavan, F. The role of Rubus bushes in the life cycle of two typhlocybinae infesting European vineyards. Redia 2001, 83, 47–60. [Google Scholar]
- Mazzoni, V.; Anfora, G.; Ioriatti, C.; Lucchi, A. Role of winter host plants in vineyard colonization and phenology of Zygina rhamni (Hemiptera: Cicadellidae: Typhlocybinae). Ann. Entomol. Soc. Am. 2008, 101, 1003–1009. [Google Scholar] [CrossRef]
- Arzone, A.; Vidano, C.; Arnò, C. Predators and parasitoids of Empoasca vitis and Zygina rhamni (Rhynchota Auchrenorrhyncha). In Proceedings of 6th Auchenorrhyncha Meeting, Turin, Italy, 7–11 September 1987; Vidano, C., Arzone, A., Eds.; CNR-IPRA: Turin, Italy, 1988; pp. 623–629. [Google Scholar]
- Viggiani, G.; Jesu, R.; Sasso, R. Cicaline della vite e loro ooparassitoidi in vigneti del Sud Italia. Boll. Lab. Entomol. Agrar. “Filippo Silvestri” 2004, 59, 3–31. [Google Scholar]
- Zanolli, P.; Pavan, F. Autumnal emergence of Anagrus wasps, egg parasitoids of Empoasca vitis, from grapevine leaves and their migration towards brambles. Agric. For. Entomol. 2011, 13, 423–433. [Google Scholar] [CrossRef]
- Duso, C.; Pavan, F. The occurrence of Metcalfa pruinosa (Say) in Italy. In Proceedings of the 6th Auchenorrhyncha Meeting, Turin, Italy, 7–11 September 1987; Vidano, C., Arzone, A., Eds.; CNR-IPRA: Turin, Italy, 1988; pp. 545–552. [Google Scholar]
- Bagnoli, B.; Lucchi, A. Dannosità e misure di controllo integrato. In La Metcalfa Negli Ecosistemi Italiani; Lucchi, A., Ed.; ARSIA Regione Toscana: Firenze, Italy, 2000. [Google Scholar]
- Wilson, S.W.; McPherson, J.E. Life histories of Anormenis septentrionalis, Metcalfa pruinosa, and Ormenoides venusta with descriptions of immature stages. Ann. Entomol. Soc. Am. 1981, 74, 299–311. [Google Scholar] [CrossRef]
- Duso, C. A new pest of vine in Europe: Metcalfa pruinosa Say (Homoptera: Flatidae). In Proceedings of the Meeting of the EC Experts’ Group “Integrated Pest Control in Viticulture”, Portoferraio, Italy, 26–28 September 1985; Cavalloro, R., Ed.; A.A. Balkema: Rotterdam, The Netherlands, 1987; pp. 103–107. [Google Scholar]
- Santini, L.; Lucchi, A. Aspetti biologici e morfo-funzionali. In La Metcalfa Negli Ecosistemi Italiani; Lucchi, A., Ed.; ARSIA Regione Toscana: Firenze, Italy, 2000. [Google Scholar]
- Stefanelli, G.; Villani, A.; Oian, B.; Mutton, P.; Pavan, F.; Girolami, V. Prove di lotta contro Metcalfa pruinosa (Say). Inf. Agrar. 1994, 50, 57–63. [Google Scholar]
- Barbattini, R.; Pravisani, L.; Zandigiacomo, P. Presenza di fillossera nel Pordenonese. Inf. Agrar. 1985, 41, 91–96. [Google Scholar]
- Mori, N.; Marchesini, E.; Duso, C.; Fornek, A. Nuove infestazioni di fillossera su vite europea tra cambiamenti climatici e nuovi biotipi. Vite Vino 2018, 3, 47–52. [Google Scholar]
- Edosa, T.T.; Jo, Y.H.; Keshavarz, M.; Anh, Y.S.; Noh, M.Y.; Han, Y.S. Current status of the management of fall webworm, Hyphantria cunea: Towards the integrated pest management development. J. Appl. Entomol. 2019, 143, 1–10. [Google Scholar] [CrossRef]
- Oliva, G. L’ifantria americana un nuovo flagello per parchi, giardini e colture agrarie. Vita Camp. 1989, 7, 22–24. [Google Scholar]
- Suzuki, N.; Kunimi, Y.; Uematsu, S.; Kobayashi, K. Changes in spatial distribution pattern during the larval stage of the fall webworm, Hyphantria cunea Drury (Lepidoptera: Arctiidae). Res. Popul. Ecol. 1980, 22, 273–283. [Google Scholar] [CrossRef]
- Castellari, P.L. Ricerche su Pandemis cerasana Hb. (=ribeana Hb.), Archips podanus Scop., A. rosanus L., Argyrotaenia pulchellana Haw. (Lep. Tortricidae) e su di un metodo per combatterli. Boll. Ist. Entomol. Univ. Studi Bologna 1988, 42, 139–174. [Google Scholar]
- Faccioli, G.; Antropoli, A.; Pasqualini, E. Relationship between males caught with low pheromone doses and larval infestation of Argyrotaenia pulchellana. Entomol. Exp. Appl. 1993, 68, 165–170. [Google Scholar] [CrossRef]
- Voigt, E. Damage caused by Argyrotaenia pulchellana Haw. to grape vines in Hungary. Pflanzenschutzberichte 1972, 43, 13–23. [Google Scholar]
- Urban, J. Occurrence, biology and harmfulness of Byctiscus betulae (L.) (Coleoptera, Rhynchitidae). Acta Univ. Agric. Silvic. Mendel. Brun. 2015, 63, 1601–1624. [Google Scholar] [CrossRef]
- Geoffrion, R. Le cigarier de la vigne. Phytoma 1979, 313, 23–24. [Google Scholar]
- Trdan, S.; Valič, N. Contribution to the knowledge on bionomics of Byctiscus betulae L. (Coleoptera, Curculionidae) on grapevine. Acta Agric. Slov. 2004, 83, 37–43. [Google Scholar] [CrossRef]
- Laccone, G.; Porcelli, F. Eccezionale recrudescenza in Puglia di sigaraio (Byctiscus betulae) su vite per uva da vino e di cecidomia suggiscorza dell’olivo (Resseliella oleisuga). Atti Giorn. Fitopatol. 2014, 1, 289–294. [Google Scholar]
- Vidano, C. Reperti inediti biologici e fitopatologici della Ceresa bubalus Fabricius quale nuovo fitomizo della vite. Riv. Vitic. Enol. Conegliano 1964, 17, 457–482. [Google Scholar]
- Ghidoni, F. Cicadella bufalo, Stictocephala bisonia. In Manuale di Viticoltura; Bottura, M., Ed.; Fondazione Edmund Mach: San Michele all’Adige, Italy, 2011; pp. 73–74. [Google Scholar]
- Arzone, A. Aspetti bioetologici e tecniche di controllo degli Auchenorrinchi viticoli. In La Difesa Della Vite Dagli Artropodi Dannosi; Ragusa, S., Tsolakis, H., Eds.; Università degli Studi di Palermo: Palermo, Italy, 2006; pp. 45–66. [Google Scholar]
- Furlan, L.; Duso, C. Insetti dannosi al mais e micotossine. In Mais e Sicurezza Alimentare; Veneto Agricoltura: Padova, Italy, 2006; pp. 33–45. [Google Scholar]
- Weires, R.W.; Straub, R.W. European corn borer infestation of newly planted apple trees. Environ. Entomol. 1982, 11, 645–647. [Google Scholar] [CrossRef]
- Ciampolini, M.; Süss, L.; Zangrando, G.P. La piralide del mais nociva alle piante madri dei vitigni portainnesti. Inf. Agrar. 1985, 41, 59–62. [Google Scholar]
- Straub, R.W.; Weires, R.W.; Eckenrode, C.J. Damage of apple cultivars by races of European corn borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 1987, 79, 359–363. [Google Scholar] [CrossRef]
- Ciampolini, M.; Trematerra, P.; Molari, G. Nuove piante ospiti della piralide del mais (Ostrinia nubilalis Hb.) in Piemonte. Inf. Agrar. 1987, 43, 68–72. [Google Scholar]
- Viggiani, G.; Di Meo, V.; Russo, A. Danni da piralide sulla vite in autunno. Inf. Agrar. 2010, 66, 66. [Google Scholar]
- Magagnoli, S.; Lanzoni, A.; Masetti, A.; Depalo, L.; Albertini, M.; Ferrari, R.; Spadola, G.; Degola, F.; Restivo, F.M.; Burgio, G.G. Sustainability of strategies for Ostrinia nubilalis management in Northern Italy: Potential impact on beneficial arthropods and aflatoxin contamination in years with different meteorological conditions. Crop Prot. 2021, 142, 105529. [Google Scholar] [CrossRef]
- Greatti, M.; Zandigiacomo, P. Insolita dinamica di popolazione della piralide. Inf. Agrar. 1995, 51, 79–80. [Google Scholar]
- Furlan, L.; Chiarini, F.; Cappellari, C.; Fracasso, F.; Benvegnù, I.; Sartori, E.; Causin, R. Efficacia della lotta integrata alla piralide del mais. Inf. Agrar. 2013, 69, 17–21. [Google Scholar]
- Gagnon, A.-V.; Bourgeois, G.; Bourdages, L.; Grenier, P.; Blondlot, A. Impact of climate change on Ostrinia nubilalis (Lepidoptera: Crambidae) phenology and its implications on pest management. Agric. For. Entomol. 2019, 21, 253–264. [Google Scholar] [CrossRef]
- Gotta, P.; Ciampitti, M.; Cavagna, B.; Bosio, G.; Gilioli, G.; Alma, A.; Battisti, A.; Mori, N.; Mazza, G.; Torrini, G.; et al. Popillia japonica—Italian outbreak management. Front. Insect Sci. 2023, 3, 1175138. [Google Scholar] [CrossRef] [PubMed]
- Lessio, F.; Lioy, S.; Colombo, M.; Alma, A. Factors affecting the impact of Popillia japonica Newman, 1841 (Coleoptera: Scarabaeidae) on grapevine in Northwestern Italy. Bull. Entomol. Res. 2025, 115, 175–183. [Google Scholar] [CrossRef]
- Chevin, H. Les différentes Tenthrèdes rencontrées sur coursons de vigne. Phytoma 1979, 305, 29–30. [Google Scholar]
- Barbattini, R.; Zandigiacomo, P.; Parmegiani, G. Indagine preliminare sui fitofagi di Rumex obtusifolius L. e Rubus crispus L. in vigneti del Friuli. Redia 1986, 64, 131–142. [Google Scholar]
- Pavan, F.; Picotti, P.; Girolami, V. Strategie per il controllo di Empoasca vitis Göthe su vite. Inf. Agrar. 1992, 48, 65–72. [Google Scholar]
- Cerutti, F.; Delucchi, V.; Baumgärtner, J.; Rubli, D. Ricerche sull’ecosistema ‘vigneto’ nel Ticino: II. La colonizzazione dei vigneti da parte della cicalina Empoasca vitis Goethe (Hom., Cicadellidae, Typhlocybinae) e del suo parassitoide Anagrus atomus Haliday (Hym., Mymaridae), e importanza della flora circostante. Mitt. Schweiz. Entomol. Ges. 1989, 62, 253–267. [Google Scholar]
- Duso, C.; Bressan, A.; Mazzon, L.; Girolami, V. First record of the grape leafhopper Erythroneura vulnerata Fitch (Hom., Cicadellidae) in Europe. J. Appl. Entomol. 2005, 129, 170–172. [Google Scholar] [CrossRef]
- Duso, C.; Zanettin, G.; Gherardo, P.; Pasqualotto, G.; Raniero, D.; Rossetto, F.; Tirello, P.; Pozzebon, A. Colonization patterns, phenology and seasonal abundance of the Nearctic leafhopper Erasmoneura vulnerata (Fitch), a new pest in European vineyards. Insects 2020, 11, 731. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, R.; Kondratieff, B.; Nelson, E.; Sclar, C. The life history of two species of grape leafhoppers on wine grapes in western Colorado. J. Kans. Entomol. Soc. 1996, 69, 337–345. [Google Scholar]
- Posenato, G.; Girolami, V.; Zangheri, S. La minatrice americana un nuovo fillominatore della vite. Inf. Agrar. 1997, 53, 75–77. [Google Scholar]
- Duso, C.; Pozzebon, A.; Baldessari, M.; Angeli, G. Current status of grapevine leafminer in northeastern Italy. IOBC/WPRS Bull. 2011, 67, 203–206. [Google Scholar]
- Kim, D.S.; Cho, M.R.; Jeon, H.Y.; Yiem, M.S.; Lee, J.H.; Na, S.Y.; Lee, J.O. Damage patterns caused by Lygocoris spinolae (Hemiptera: Miridae) on ‘Campbell Early’ grapes. J. Asia-Pac. Entomol. 2000, 3, 95–101. [Google Scholar] [CrossRef]
- Cho, Y.S.; Song, J.H.; Lim, K.H.; Choi, J.J.; Lee, H.C.; Cho, K.S.; Luo, Z.; Zhang, Q. Damage symptoms and control timing by Apolygus spinolae (Meyer-Dür) (Hemiptera: Miridae) on sweet persimmon in Korea. Acta Hortic. 2013, 996, 283–286. [Google Scholar] [CrossRef]
- Patton, A.; Lucin, R.; Ghidoni, F. Cimice verde, Apolygus spinolae. In Manuale di Viticoltura; Bottura, M., Ed.; Fondazione Edmund Mach: San Michele all’Adige, Italy, 2011; pp. 92–93. [Google Scholar]
- Kim, D.S.; Cho, M.R.; Lee, J.H.; Jeon, H.Y.; Yun, M.S.; Choi, Y.M. Seasonal migration of Apolygus spinolae (Hemiptera: Miridae) between grapevines and herbaceous plants. J. Asia-Pac. Entomol. 2002, 5, 91–95. [Google Scholar] [CrossRef]
- Gremo, F.; Pinna, M. Danni da Lygus spinolai (Meyer-Duer) in alcune aree viticole del Piemonte. Inf. Agrar. 1988, 44, 37–39. [Google Scholar]
- Boiteau, G.; Vernon, R.S. Physical barriers for the control of insect pests. In Physical Control Methods in Plant Protection; Vincent, C., Panetton, B., Fleurat-Lessard, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 224–247. [Google Scholar] [CrossRef]
- Lucin, R.; Ghidoni, F. Maggiolino. Melolontha melolontha. In Manuale di Viticoltura; Bottura, M., Ed.; Fondazione Edmund Mach: San Michele all’Adige, Italy, 2011; pp. 102–104. [Google Scholar]
- Ebbenga, D.N.; Burkness, E.C.; Hutchison, W.D. Evaluation of exclusion netting for Spotted-Wing Drosophila (Diptera: Drosophilidae) management in Minnesota wine grapes. J. Econ. Entomol. 2019, 112, 2287–2294. [Google Scholar] [CrossRef]
- Lessio, F.; Ricciardi, R.; Lucchi, A.; Alma, A. Artropodi dannosi all’apparato fogliare della vite. Vitenda 2020, 25, 114–121. [Google Scholar]
- Nunin, G.; Perin, G.; Amedeo, S.; Cargnus, E.; Manfreda, L.; Pavan, F. Minori deposizioni di uova con il caolino. Vite Vino 2023, 3/2023, 54–59. [Google Scholar]
- Tirello, P.; Marchesini, E.; Gherardo, P.; Raniero, D.; Rossetto, F.; Pozzebon, A.; Duso, C. The control of the American leafhopper Erasmoneura vulnerata (Fitch) in European vineyards: Impact of synthetic and natural insecticides. Insects 2021, 12, 85. [Google Scholar] [CrossRef]
- Tacoli, F.; Cargnus, E.; Kiaeian Moosavi, F.; Zandigiacomo, P.; Pavan, F. Efficacy and mode of action of kaolin and its interaction with bunch-zone leaf removal against Lobesia botrana on grapevines. J. Pest Sci. 2019, 92, 465–475. [Google Scholar] [CrossRef]
- Tacoli, F.; Cargnus, E.; Zandigiacomo, P.; Pavan, F. Side effects of sulfur dust on the European Grapevine Moth Lobesia botrana and the predatory mite Kampimodromus aberrans in vineyards. Insects 2020, 11, 825. [Google Scholar] [CrossRef]
- Maier, R.M.; Williamson, R.C. Evaluation of kaolin clay as an alternative management tactic for Japanese Beetle feeding damage in grape vineyards. J. Hortic. 2016, 3, 3. [Google Scholar] [CrossRef]
- Bosio, G.; Giacometto, E.; Vigasio, M.; Ferrari, D.; Viglione, P.; Renolfi, F.; Rigamonti, I.; Vigasio, M.; Viglione, P. Prove di lotta contro Popillia japonica in vigneto nel nord Piemonte. Atti Giorn. Fitopatol. 2020, 1, 283–292. [Google Scholar]
- Lozzia, G.C. Incidenza delle tecniche agrocolturali sulla dinamica delle popolazioni di tripidi nei vigneti. Notiz. Mal. Piante 1988, 109, 7–18. [Google Scholar]
- Pollini, A.; Sannino, L.; Espinosa, B. Insolita e massiccia invasione di Hyles livornica. Inf. Agrar. 2009, 65, 58–59. [Google Scholar]
- Altieri, M.A.; Schmidt, L.L. Cover crop manipulation in northern California apple orchards and vineyards: Effects on arthropod communities. Biol. Agric. Hortic. 1985, 3, 1–24. [Google Scholar] [CrossRef]
- Wilson, H.; Daane, K.M. Review of ecologically-based pest management in California vineyards. Insects 2017, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Winter, S.; Bauer, T.; Strauss, P.; Kratschmer, S.; Paredes, D.; Popescu, D.; Landa, B.; Guzmán, G.; Gómez, J.A.; Guernion, M.; et al. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A meta-analysis. J. Appl. Ecol. 2018, 55, 2484–2495. [Google Scholar] [CrossRef] [PubMed]
- Zanettin, G.; Bullo, A.; Pozzebon, A.; Burgio, G.; Duso, C. Influence of vineyard inter-row groundcover vegetation management on arthropod assemblages in the vineyards of north-eastern Italy. Insects 2021, 12, 349. [Google Scholar] [CrossRef]
- Cargnus, E.; Kiaeian Moosavi, F.; Frizzera, D.; Floreani, C.; Zandigiacomo, P.; Bigot, G.; Mosetti, D.; Pavan, F. Influence of vineyard inter-row management on grapevine leafhoppers and their natural enemies. Insects 2024, 15, 355. [Google Scholar] [CrossRef] [PubMed]
- Mouden, S.; Sarmiento, K.F.; Klinkhamer, P.G.L.; Leiss, K.A. Integrated pest management in western flower thrips: Past, present and future. Pest Manag. Sci. 2017, 73, 813–822. [Google Scholar] [CrossRef]
- Weber, A.; Maixner, M. Survey of populations of the planthopper Hyalesthes obsoletus Sign. (Auchenorrhyncha, Cixiidae) for infection with the phytoplasma causing grapevine yellows in Germany. J. Appl. Entomol. 1998, 122, 375–381. [Google Scholar] [CrossRef]
- Pavan, F.; Cargnus, E.; Tacoli, F.; Zandigiacomo, P. Standardization and criticism of sampling procedures using sticky card traps: Monitoring sap-sucking insect pests and Anagrus atomus inhabiting European vineyards. Bull. Insectol. 2021, 74, 291–306. [Google Scholar]
- Pavan, F.; Mori, N.; Bigot, G.; Zandigiacomo, P. Border effect in spatial distribution of Flavescence dorée affected grapevines and outside source of Scaphoideus titanus vectors. Bull. Insectol. 2012, 65, 281–290. [Google Scholar]
- Bagnoli, B.; Ricciardi, R.; De Fazi, L.; D’Anna, G.; Braccini, P.; Benelli, G.; Lucchi, A. Monitoring and management of the Nearctic leafhopper Scaphoideus titanus (Hemiptera: Cicadellidae) in Italian vineyards. J. Econ. Entomol. 2024, 117, 2281–2291. [Google Scholar] [CrossRef] [PubMed]
- Marchesini, E. Cicalina maculata (Erasmoneura vulnerata). In Rapporto di Attività Ricerca & Sviluppo; Agrea Centro Studi: San Giovanni Lupatoto, Italy, 2024; pp. 55–66. Available online: https://agrea.it/wp-content/uploads/e.-vulnerata.pdf (accessed on 15 December 2025).
- Catoni, G. Contributo per un Metodo Pratico di Difesa Contro le Tignuole Dell’uva; Tipografica Ditta C. Cassone: Casale Monferrato, Italy, 1910; 27p. [Google Scholar]
- Tremblay, E. Policroside. In Enciclopedia Agraria Italiana; REDA: Roma, Italy, 1978; Volume 9, pp. 376–377. [Google Scholar]
- Lucin, R.; Ghidoni, F. Bostrico e scolitidi. Sinoxylon perforans e Xyleborus germanus. In Manuale di Viticoltura; Bottura, M., Ed.; Fondazione Edmund Mach: San Michele all’Adige, Italy, 2011; pp. 105–107. [Google Scholar]
- Mazzon, L.; Martini, S. Il bruco americano Hyphantria cunea (Drury). Sherwood 2000, 62, 27–28. [Google Scholar]
- Della Beffa, G. Gli Insetti Dannosi All’agricoltura e i Moderni Metodi e Mezzi di Lotta; Ulrico Hoepli Editore: Milano, Italy, 1949. [Google Scholar]
- Pellizzari Scaltriti, G. Pullulazione di Janetiella oenophila Haim. Sui vigneti dell’Alto Adige. Inf. Fitopatol. 1981, 30, 11–14. [Google Scholar]
- Carmona, M.M. Calepitrimerus vitis (Nalepa), responsável pela «Acariose da videira». 1—Notas sobre a morfologia, biologia e sintomatologia. Agron. Lusit. 1978, 39, 29–56. [Google Scholar]
- Strapazzon, A.; Pavan, F.; Borin, G. Acariosi della vite nel Veneto: Criteri per una corretta diagnosi. Inf. Fitopatol. 1986, 36, 19–22. [Google Scholar]
- Dulinafka, G.; Szendrey, G.; Szegedi, E. Szőlő szaporítóanyag atkamentesítése hőkezeléssel [Application of thermotherapy to obtain grapevine propagating material free of leaf mites]. Növényvédelem 1995, 31, 381–385. [Google Scholar]
- Zangheri, S. Le “tignole dell’uva” (Clysia ambiguella Hb. E Polychrosis botrana Schiff.) nel Veneto e nel Trentino. Riv. Viticolt. Enol. Conegliano 1959, 12, 3–39. [Google Scholar]
- Tremblay, E. Targionia. In Enciclopedia Agraria Italiana; REDA: Roma, Italy, 1985; Volume 12, p. 289. [Google Scholar]
- Duso, C.; Trentin, R.; Borgo, M.; Egger, E. Influenza della termoregolazione estiva mediante acqua sulle popolazioni di Planococcus ficus Sign. Su vite. Riv. Vitic. Enol. Conegliano 1985, 38, 597–607. [Google Scholar]
- Fornasiero, D.; Pavan, F.; Pozzebon, A.; Duso, C. Influence of grapevine water stress on egg laying, egg hatching and nymphal survival of the green leafhopper Empoasca vitis. Entomol. Gen. 2022, 42, 75–85. [Google Scholar] [CrossRef]
- Esteban, M.A.; Villanueva, M.J.; Lissarrague, J.R. Effect of irrigation on changes in the anthocyanin composition of the skin of cv Tempranillo (Vitis vinifera L.) grape berries during ripening. J. Sci. Food Agric. 2001, 81, 409–420. [Google Scholar] [CrossRef]
- Peterlunger, E.; Sivilotti, P.; Colussi, V. Water stress increased polyphenolic quality in Merlot grapes. Acta Hortic. 2005, 689, 293–300. [Google Scholar] [CrossRef]
- Chaves, M.M.; Santos, T.P.; Souza, C.R.; Ortuño, M.F.; Rodrigues, M.L.; Lopes, C.M.; Maroco, J.P.; Pereira, J.S. Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Bucchetti, B.; Matthews, M.A.; Falginella, L.; Peterlunger, E.; Castellarin, S.D. Effect of water deficit on Merlot grape tannins and anthocyanins across four seasons. Sci. Hortic. 2011, 128, 297–305. [Google Scholar] [CrossRef]
- Kiaeian Moosavi, F.; Cargnus, E.; Pavan, F.; Bigot, G.; Zandigiacomo, P. Cultural control of Lobesia botrana on grapevines. IOBC-WPRS Bull. 2018, 139, 46–49. [Google Scholar]
- Kiaeian Moosavi, F.; Cargnus, E.; Pavan, F.; Zandigiacomo, P. Mortality of eggs and newly hatched larvae of Lobesia botrana (Lepidoptera: Tortricidae) exposed to high temperatures in the laboratory. Environ. Entomol. 2017, 46, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Kiaeian Moosavi, F.; Cargnus, E.; Pavan, F.; Zandigiacomo, P. Effects of grapevine bunch exposure to sunlight on berry surface temperature and Lobesia botrana (Lepidoptera: Tortricidae) egg laying, hatching and larval settlement. Agric. For. Entomol. 2018, 20, 420–432. [Google Scholar] [CrossRef]
- Moleas, T. Observations biologiques sur l’Eudemis en culture protégée. In Proceedings of the Conférence Internationale sur les Ravageurs en Agriculture, Paris, France, 1–3 December 1987; pp. 221–228. [Google Scholar]
- Haviland, D.R.; Bentley, W.J.; Daane, K.M. Hot-water treatments for control of Planococcus ficus (Homoptera: Pseudococcidae) on dormant grape cuttings. J. Econ. Entomol. 2005, 98, 1109–1115. [Google Scholar] [CrossRef]
- Levi, A. Il tarlo o la tignola dell’uva. Boll. Assoc. Agrar. Friulana 1869, 14, 72–98. [Google Scholar]
- Caudwell, A. Epidemiology and characterization of Flavescence dorée (FD) and other grapevine yellows. Agronomie 1990, 10, 655–663. [Google Scholar] [CrossRef]
- Angelini, E.; Constable, F.; Duduk, B.; Fiore, N.; Quaglino, F.; Bertaccini, A. Grapevine phytoplasmas. In Phytoplasmas: Plant Pathogenic Bacteria—I: Characterisation and Epidemiology of Phytoplasma—Associated Diseases; Rao, G.P., Bertaccini, A., Fiore, N., Liefting, L.W., Eds.; Springer: Singapore, 2018; pp. 123–151. [Google Scholar] [CrossRef]
- Schvester, D.; Carle, P.; Moutous, G. Nouvelles données sur la transmission de la flavescence dorée de la vigne par Scaphoideus littoralis Ball. Ann. Zool. Écol. Anim. 1969, 1, 445–465. [Google Scholar]
- Caudwell, A. La Flavescence dorée de la vigne en France. Phytoma 1981, 325, 16–19. [Google Scholar]
- Garau, R.; Sechi, A.; Prota, V.A.; Moro, G. Productive parameters in Chardonnay and Vermentino grapevines infected with “bois noir” and recovered in Sardinia. Bull. Insectol. 2007, 60, 233–234. [Google Scholar]
- Morone, C.; Boveri, M.; Giosuè, S.; Gotta, P.; Rossi, V.; Scapin, I.; Marzachì, C. Epidemiology of flavescence dorée in vineyards in northwestern Italy. Phytopathology 2007, 97, 1422–1427. [Google Scholar] [CrossRef]
- Pavan, F.; Mori, N.; Bressan, S.; Mutton, P. Control strategies for grapevine phytoplasma diseases: Factors influencing the profitability of replacing symptomatic plants. Phytopathol. Mediterr. 2012, 51, 11–22. [Google Scholar]
- Oliveira, M.; Castro, S.; Paltrinieri, S.; Bertaccini, A.; Sottomayor, M.; Santos, M.A.; Vasconcelos, M.W.; Carvalho, S.M.P. “Flavescence dorée” impacts growth, productivity and ultrastructure of Vitis vinifera plants in Portuguese “Vinhos Verdes” region. Sci. Hortic. 2020, 261, 108742. [Google Scholar] [CrossRef]
- Olivier, C.; Vincent, C.; Saguez, J.; Galka, B.; Weintraub, P.G.; Maixner, M. Leafhoppers and planthoppers: Their bionomics, pathogen transmission and management in vineyards. In Arthropod Management in Vineyards: Pests, Approaches, and Future Directions; Bostanian, N.J., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 253–270. [Google Scholar] [CrossRef]
- Alma, A.; Lessio, F.; Nickel, H. Insects as phytoplasma vectors: Ecological and epidemiological aspects. In Phytoplasmas: Plant Pathogenic Bacteria—II: Transmission and Management of Phytoplasma—Associated Diseases; Bertaccini, A., Weintraub, P.G., Rao, G.P., Mori, N., Eds.; Springer: Singapore, 2019; pp. 1–25. [Google Scholar] [CrossRef]
- Quaglino, F.; Zhao, Y.; Casati, P.; Bulgari, D.; Bianco, P.A.; Wei, W.; Davis, R.E. ‘Candidatus Phytoplasma solani’, a novel taxon associated with stolbur and Bois noir related diseases of plants. Int. J. Syst. Evol. Microbiol. 2013, 63, 2879–2894. [Google Scholar] [CrossRef]
- Maixner, M. Transmission of German grapevine yellows (Vergilbungskrankheit) by the planthopper Hyalesthes obsoletus (Auchenorrhyncha: Cixiidae). Vitis 1994, 33, 103–104. [Google Scholar] [CrossRef]
- Maixner, M. Phytoplasmas epidemiological systems with multiple plant hosts. In Phytoplasmas: Genomes, Plant Hosts and Vectors; Weintraub, P.G., Jones, P., Eds.; CABI Publishing: Wallingford, UK, 2010; pp. 213–232. [Google Scholar] [CrossRef]
- Langer, M.; Maixner, M. Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. Vitis 2004, 43, 191–199. [Google Scholar] [CrossRef]
- Maixner, M. Grapevine yellows—Current developments and unsolved questions. In Extended Abstracts, 15th Meeting of the International Council for the Study of Virus and Viruslike Diseases of the Grapevine; addendum; South African Society for Enology and Viticulture: Stellenbosch, South Africa, 2006; pp. 1–8. [Google Scholar]
- Mori, N.; Pavan, F.; Bondavalli, R.; Reggiani, N.; Paltrinieri, S.; Bertaccini, A. Factors affecting the spread of “Bois Noir” disease in north Italy vineyards. Vitis 2008, 47, 65–72. [Google Scholar] [CrossRef]
- Mori, N.; Cargnus, E.; Martini, M.; Pavan, F. Relationships between Hyalesthes obsoletus, its herbaceous hosts and Bois noir epidemiology in northern Italian vineyards. Insects 2020, 11, 606. [Google Scholar] [CrossRef]
- Schvester, A.; Carle, P.; Moutous, G. Transmission de la Flavescence dorée de la vigne par Scaphoideus littoralis Ball. (Homopt. Jassidae). Ann. Épiphyties 1963, 14, 175–198. [Google Scholar]
- Chuche, J.; Thiéry, D. Biology and ecology of the Flavescence dorée vector Scaphoideus titanus: A review. Agron. Sustain. Dev. 2014, 34, 381–403. [Google Scholar] [CrossRef]
- Gonella, E.; Benelli, G.; Arricau-Bouvery, N.; Bosco, D.; Duso, C.; Dietrich, C.H.; Galetto, L.; Rizzoli, A.; Jović, J.; Mazzoni, V.; et al. Scaphoideus titanus up-to-the-minute: Biology, ecology, and role as a vector. Entomol. Gen. 2024, 44, 481–496. [Google Scholar] [CrossRef]
- Schvester, D.; Moutous, G.; Carle, P. Scaphoideus littoralis Ball. (Homopt. Jassidae) cicadelle vectrice de la Flavescence dorée de la vigne. Rev. Zool. Agr. Appl. 1962, 61, 118–131. [Google Scholar]
- Vidano, C. Scoperta in Italia dello Scaphoideus littoralis Ball cicalina americana collegata alla “Flavescence dorée” della vite. L’Italia Agric. 1964, 101, 1031–1049. [Google Scholar]
- Gonella, E.; Benelli, G.; Arricau-Bouvery, N.; Bosco, D.; Duso, C.; Dietrich, C.H.; Galetto, L.; Rizzoli, A.; Jović, J.; Mazzoni, V.; et al. Scaphoideus titanus forecasting and management: Quo vadis? Entomol. Gen. 2024, 44, 497–510. [Google Scholar] [CrossRef]
- Lessio, F.; Portaluri, A.; Paparella, F.; Alma, A. A mathematical model of flavescence dorée epidemiology. Ecol. Model. 2015, 312, 41–53. [Google Scholar] [CrossRef]
- Oggier, A.; Conedera, M.; Debonneville, C.; Schumpp, O.; Rizzoli, A. Gone-wild grapevines in forests host Phytoplasma genotypes linked to grapevine’s flavescence dorée epidemics in cultivated vineyards and competent vectors. J. Plant Pathol. 2024, 106, 1537–1548. [Google Scholar] [CrossRef]
- Filippin, L.; Jović, J.; Cvrković, T.; Forte, V.; Clair, D.; Toševski, I.; Boudon-Padieu, E.; Borgo, M.; Angelini, E. Molecular characteristics of phytoplasmas associated with Flavescence dorée in clematis and grapevine and preliminary results on the role of Dictyophara europaea as a vector. Plant Pathol. 2009, 58, 826–837. [Google Scholar] [CrossRef]
- Lessio, F.; Picciau, L.; Gonella, E.; Mandrioli, M.; Tota, F.; Alma, A. The mosaic leafhopper Orientus ishidae: Host plants spatial distribution, infectivity, and transmission of 16SrV phytoplasmas to vines. Bull. Insectol. 2016, 69, 277–289. [Google Scholar]
- Filippin, L.; De Pra, V.; Zottini, M.; Borgo, M.; Angelini, E.; Bertaccini, A.; Maini, S. Nucleotide sequencing of imp gene in phytoplasmas associated to ‘flavescence dorée’ from Ailanthus altissima. Bull. Insectol. 2011, 64, S49–S50. [Google Scholar]
- Mehle, N.; Rupar, M.; Seljak, G.; Ravnikar, M.; Dermastia, M. Molecular diversity of ‘flavescence dorée’ phytoplasma strains in Slovenia. Bull. Insectol. 2011, 64, S29–S30. [Google Scholar]
- Casati, P.; Jermini, M.; Quaglino, F.; Corbani, G.; Schaerer, S.; Passera, A.; Bianco, P.A.; Rigamonti, I.E. New insights on Flavescence dorée phytoplasma ecology in the vineyard agroecosystem in southern Switzerland. Ann. Appl. Biol. 2017, 171, 37–51. [Google Scholar] [CrossRef]
- Jermini, M.; Scharer, S.; Casati, P.; Corbani, G.; Quaglino, F.; Rigamonti, I.; Bianco, P. Orientus ishidae, a new vector of flavescence dorée in Ticino. Rev. Suisse Vitic. Arboric. Hortic. 2017, 49, 280–288. [Google Scholar]
- Jarausch, B.; Markheiser, A.; Jarausch, W.; Biancu, S.; Kugler, S.; Runne, M.; Maixner, M. Risk assessment for the spread of flavescence dorée-related phytoplasmas from alder to grapevine by alternative insect vectors in Germany. Microorganisms 2023, 11, 2766. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); Tramontini, S.; Delbianco, A.; Vos, S. Pest survey card on flavescence dorée phytoplasma and its vector Scaphoideus titanus. EFSA Support. Publ. 2020, 17, EN-1909. [Google Scholar] [CrossRef]
- Baggiolini, M.; Canevascini, V.; Caccia, R.; Tencalla, Y.; Sobrio, G. Présence dans le vignoble du Tessin d’une cicadelle néarctique nouvelle pour la Suisse, Scaphoideus littoralis Ball (Hom.: Jassidae), vecteur possible de la flavescence dorée. Mitt. Schweiz. Entomol. Ges. 1968, 40, 270–275. [Google Scholar]
- Linder, C.; Jermini, M. Le point sur la diffusion en Suisse de Scaphoideus titanus Ball, cicadelle vectrice de la flavescence dorée. Rev. Suisse Vitic. Arboric. Hortic. 1999, 31, 53. [Google Scholar]
- Rigamonti, I.V.; Mariani, L.; Cola, G.; Jermini, M.; Baumgärtner, J. Abrupt and gradual temperature changes influence on the climatic suitability of Northwestern Alpine grapevine-growing regions for the invasive grape leafhopper Scaphoideus titanus Ball (Hemiptera, Cicadellidae). Acta Oecol. 2018, 91, 22–29. [Google Scholar] [CrossRef]
- Schaerer, S.; Linder, C.; Jeanrenaud, M. La flavescence dorée au nord des Alpes, bilan 2016. Rev. Suisse Vitic. Arboric. Hortic. 2017, 49, 59–60. [Google Scholar]
- Alma, A. Diffusione di Scaphoideus titanus Ball in Italia. Atti Giorn. Fitopatol. 2002, 1, 51–54. [Google Scholar]
- Santini, L.; Lucchi, A. Presenza in Toscana del cicadellide Scaphoideus titanus. Inf. Agrar. 1998, 54, 73–74. [Google Scholar]
- Bertaccini, A.; Botti, S.; Tonola, A.; Milano, C.; Braccini, P.; Sfalanga, A. Identificazione di fitoplasmi di flavescenza dorata in un vigneto della Toscana. Inf. Agrar. 2003, 59, 65–67. [Google Scholar]
- Viggiani, G. Il vettore della flavescenza dorata trovato in Basilicata. Inf. Agrar. 2002, 58, 59. [Google Scholar]
- Viggiani, G. Il vettore della flavescenza dorata anche in Campania. Inf. Agrar. 2004, 60, 98. [Google Scholar]
- Askani, L.; Zimmermann, O.; Zimmermann, C.; Rinke, F.; Jarausch, B.; Hoffmann, C.; Zikeli, K.; Fuchs, R. First Report of Scaphoideus titanus in Germany (Baden-Württemberg). EPPO Bull. 2024, 54, 366–368. [Google Scholar] [CrossRef]
- Panassiti, B.; Breuer, M.; Marquardt, S.; Biedermann, R. Influence of environment and climate on occurrence of the cixiid planthopper Hyalesthes obsoletus, the vector of the grapevine disease ‘bois noir’. Bull. Entomol. Res. 2013, 103, 621–633. [Google Scholar] [CrossRef]
- Pavan, F.; Carraro, L.; Vettorello, G.; Pavanetto, E.; Girolami, V.; Osler, R. Flavescenza dorata nei vigneti delle colline trevigiane. Inf. Agrar. 1997, 53, 73–78. [Google Scholar]
- Panassiti, B.; Hartig, F.; Breuer, M.; Biedermann, R. Bayesian inference of environmental and biotic factors determining the occurrence of the grapevine disease ‘bois noir’. Ecosphere 2015, 6, 143. [Google Scholar] [CrossRef]
- Eveillard, S.; Jollard, C.; Labroussaa, F.; Khalil, D.; Perrin, M.; Desqué, D.; Salar, P.; Razan, F.; Hévin, C.; Bordenave, L.; et al. Contrasting susceptibilities to flavescence dorée in Vitis vinifera, rootstocks and wild Vitis species. Front. Plant Sci. 2016, 7, 1762. [Google Scholar] [CrossRef] [PubMed]
- Ripamonti, M.; Pegoraro, M.; Morabito, C.; Gribaudo, I.; Schubert, A.; Bosco, D.; Marzachì, C. Susceptibility to flavescence dorée of different Vitis vinifera genotypes from north-western Italy. Plant Pathol. 2021, 70, 511–520. [Google Scholar] [CrossRef]
- Pavan, F.; Frizzera, D.; Martini, M.; Lujan, C.; Cargnus, E. Is the removal of nettles along ditches effective in controlling Bois Noir in vineyards? Agronomy 2024, 14, 643. [Google Scholar] [CrossRef]
- Pavan, F.; Stefanelli, G.; Villani, A.; Mori, N.; Posenato, G.; Bressan, A.; Girolami, V. Controllo della flavescenza dorata attraverso la lotta contro il vettore Scaphoideus titanus Ball. In Flavescenza Dorata e Altri Giallumi Della Vite in Toscana e in Italia; Bertaccini, A., Braccini, P., Eds.; Quaderno ARSIA: Firenze, Italy, 2005; Volume 3/2005, pp. 91–116. [Google Scholar]
- Bressan, S.; Canevese, T.; Cargnus, E.; Cristante, A.; Deana, C.; Duso, C.; Frizzera, D.; Mutton, P.; Parolin, M.; Totis, F.; et al. Prove di lotta contro Scaphoideus titanus effettuate in Friuli Venezia Giulia nel 2022. Not. ERSA 2023, 1/2023, 28–35. [Google Scholar]
- Adrakey, H.K.; Gibson, G.J.; Eveillard, S.; Malembic-Maher, S.; Fabre, F. Bayesian inference for spatio-temporal stochastic transmission of plant disease in the presence of roguing: A case study to characterise the dispersal of Flavescence dorée. PloS Comput. Biol. 2023, 19, e1011399. [Google Scholar] [CrossRef]
- Pierro, R.; Moussa, A.; Mori, N.; Marcone, C.; Quaglino, F.; Romanazzi, G. Bois noir management in vineyard: A review on effective and promising control strategies. Front. Plant Sci. 2024, 15, 1364241. [Google Scholar] [CrossRef] [PubMed]
- Langer, M.; Darimont, H.; Maixner, M. Control of phytoplasma vectors in organic viticulture. IOBC/WPRS Bull. 2003, 26, 197–202. [Google Scholar]
- Maixner, M. Biology of Hyalesthes obsoletus and approaches to control this soilborne vector of Bois noir disease. IOBC/WPRS Bull. 2007, 30, 3–9. [Google Scholar]
- Kast, W.K.; Stark-Urnau, M.; Bleyer, K. Bois noir, a severe outbreak of stolbur type A in Southern Germany—Disease abundance and treatments against disease-causing agents and vectors. IOBC/WPRS Bull. 2008, 36, 121–125. [Google Scholar]
- Maixner, M.; Gerhard, Y.; Krohner, D. Field trials to study the efficiency of weed control in reducing the density of adult Hyalesthes obsoletus. In Proceedings of the Current Status and Perspectives of Phytoplasma Disease Research and Management, COST Meeting, Sitges, Spain, 1–2 February 2010; p. 87. [Google Scholar]
- Kehrli, P.; Delabays, N. Controlling ‘bois noir’ disease on grapevine: Does the timing of herbicide application affect vector emergence? J. Appl. Entomol. 2012, 136, 234–237. [Google Scholar] [CrossRef]
- Mori, N.; Pavan, F.; Maixner, M. Control of Hyalesthes obsoletus nymphs based on chemical weeding and insecticides applied on Urtica dioica. Vitis 2014, 53, 103–109. [Google Scholar] [CrossRef]
- Mori, N.; Pozzebon, A.; Duso, C.; Reggiani, N.; Pavan, F. Vineyard colonization by Hyalesthes obsoletus (Hemiptera: Cixiidae) induced by stinging nettle cut along surrounding ditches. J. Econ. Entomol. 2016, 109, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Riedle-Bauer, M.; Hanak, K.; Sára, A.; Bauer, H. Erkenntnisse zur Epidemiologie der Schwarzholzkrankheit (Stolbur-Phytoplasma)—Wird die Krankheit durch Massnahmen zur Erhaltung der Biodiversität gefördert? Mitteilungen Klosterneubg 2010, 60, 376–381. [Google Scholar]
- Pavan, F. Possibilità di controllo dei potenziali vettori dell’agente della flavescenza dorata. Inf. Agrar. 1989, 45, 55–61. [Google Scholar]
- Arzone, A.; Alma, A.; Bosco, D.; Patetta, A. MLO-infected weeds in the vineyards of north-western Italy. J. Phytopathol. 1995, 143, 257–260. [Google Scholar] [CrossRef]
- Maixner, M.; Darimont, H.; Mohr, H.D. Studies on the transmission of Bois noir to weeds and potential ground-cover plants by Hyalesthes obsoletus Signoret (Auchenorrhyncha: Cixiidae). IOBC/WPRS Bull. 2001, 27, 249–251. [Google Scholar]
- Mori, N.; Pavan, F.; Reggiani, N.; Bacchiavini, M.; Mazzon, L.; Paltrinieri, S.; Bertaccini, A. Correlation of bois noir disease with nettle and vector abundance in northern Italy vineyards. J. Pest Sci. 2012, 85, 23–28. [Google Scholar]
- Quaglino, F.; Passera, A.; Faccincani, M.; Moussa, A.; Pozzebon, A.; Sanna, F.; Casati, P.; Bianco, P.A.; Mori, N. Molecular and spatial analyses reveal new insights on Bois noir epidemiology in Franciacorta vineyards. Ann. Appl. Biol. 2021, 179, 151–168. [Google Scholar] [CrossRef]
- Prazaru, S.C.; Da Frè, R.; Botteon, B.; D’Ambrogio, L.; Pavan, F.; Duso, C. Does woody vegetation influence the spatial distribution of Scaphoideus titanus (Hemiptera: Cicadellidae) and Flavescence dorée in vineyards? Analysis of 4 case studies in north-eastern Italy. Ann. Entomol. Soc. Am. 2025, 118, 458–469. [Google Scholar] [CrossRef]
- Lessio, F.; Alma, A. Dispersal patterns and chromatic response of Scaphoideus titanus Ball (Homoptera: Cicadellidae), vector of the phytoplasma agent of grapevine flavescence dorée. Agric. For. Entomol. 2004, 6, 121–127. [Google Scholar] [CrossRef]
- Lessio, F.; Tota, F.; Alma, A. Tracking the dispersion of Scaphoideus titanus Ball (Hemiptera: Cicadellidae) from wild to cultivated grapevine: Use of a novel mark–capture technique. Bull. Entomol. Res. 2014, 104, 432–443. [Google Scholar] [CrossRef]
- Sharon, R.; Soroker, V.; Wesley, S.D.; Zahavi, T.; Harari, A.; Weintraub, P.G. Vitex agnus-castus is a preferred host plant for Hyalesthes obsoletus. J. Chem. Ecol. 2005, 31, 1051–1063. [Google Scholar] [CrossRef]
- Zahavi, T.; Peles, S.; Harari, A.R.; Soroker, V.; Sharon, R. Push and pull strategy to reduce Hyalesthes obsoletus population in vineyards by Vitex agnus-castus as trap plant. Bull. Insectol. 2007, 60, 297–298. [Google Scholar]
- Kosovac, A.; Radonjić, S.; Hrnčić, S.; Krstić, O.; Toševski, I.; Jović, J. Molecular tracing of the transmission routes of bois noir in Mediterranean vineyards of Montenegro and experimental evidence for the epidemiological role of Vitex agnus-castus (Lamiaceae) and associated Hyalesthes obsoletus (Cixiidae). Plant Pathol. 2016, 65, 285–298. [Google Scholar] [CrossRef]
- Moussa, A.; Mori, N.; Faccincani, M.; Pavan, F.; Bianco, P.A.; Quaglino, F. Vitex agnus-castus cannot be used as trap plant for the vector Hyalesthes obsoletus to prevent infections by ‘Candidatus Phytoplasma solani’ in northern Italian vineyards: Experimental evidence. Ann. Appl. Biol. 2019, 175, 302–312. [Google Scholar] [CrossRef]
- Picciau, L.; Lavezzaro, S.; Morando, A.; Cesano, A.; Cuttini, D.; Saladini, M.A.; Alma, A. Spollonatura e pulizia sottofila limitano il legno nero della vite. Inf. Agrar. 2010, 66, 57–59. [Google Scholar]
- Cravedi, P.; Mazzoni, E.; Cervato, P. Osservazioni sulla biologia di Scaphoideus titanus Ball (Homoptera: Cicadellidae). Redia 1993, 84, 57–70. [Google Scholar]
- Posenato, G.; Mori, N.; Bressan, A.; Girolami, V.; Sancassani, G.P. Scaphoideus titanus, vettore della flavescenza dorata: Conoscerlo per combatterlo. Inf. Agrar. 2001, 57, 91–93. [Google Scholar]
- Trivellone, V.; Cara, C.; Jermini, M. Répartition spatio-temporelle de la cicadelle Scaphoideus titanus Ball dans l’agroécosystème viticole. Rev. Suisse Vitic. Arboric. Hortic. 2015, 47, 216–222. [Google Scholar]
- Bagnoli, B.; Angelini, E.; Borgo, M.; Ferretti, L.; Gargani, E.; Pasquini, G. Valutazione del rischio di diffusione di Scaphoideus titanus mediante il materiale di propagazione della vite. Riv. Vitic. Enol. Conegliano 2011, 64, 25–26. [Google Scholar]
- Cara, C.; Trivellone, V.; Linder, C.; Junkert, J.; Jermini, M. Influence de la gestion des repousses du tronc et du bois de taille sur les densites de Scaphoideus titanus. Rev. Suisse Vitic. Arboric. Hortic. 2013, 45, 114–119. [Google Scholar]
- Trivellone, V.; Jermini, M.; Posenato, G.; Mori, N. Influence of pruning wood management and suckering on Scaphoideus titanus Ball density in two distinct wine-growing area. In Book of Abstracts IOBC-WPRS Meeting of the Working Group on “Integrated Protection and Production in Viticulture”; IOBC-WPRS: Vienna, Austria, 2015; p. 11. [Google Scholar]
- Bagnoli, B.; Gargani, E. Survey on Scaphoideus titanus egg distribution on grapevine. IOBC/WPRS Bull. 2011, 67, 233–237. [Google Scholar]
- Linder, C.; Schaub, L.; Klötzli-Estermann, F. Effectiveness of hot water treatments against the eggs of Scaphoideus titanus Ball. IOBC/WPRS Bull. 2011, 67, 17–20. [Google Scholar]
- Altieri, M.A.; Ponti, L.; Nicholls, C.I. Manipulating vineyard biodiversity for improved insect pest management: Case studies from northern California. Int. J. Biodivers. Sci. Manag. 2005, 1, 191–203. [Google Scholar] [CrossRef]
- Lo Pinto, M.; Agrò, A. Le Infrastrutture ecologiche come elemento funzionale nella gestione della biodiversità degli agrosistemi, con particolare riferimento al vigneto. Prot. Colt. 2013, 4, 15–25. [Google Scholar]
- Begg, G.S.; Cook, S.M.; Dye, R.; Ferrante, M.; Franck, P.; Lavigne, C.; Lövei, G.L.; Mansion-Vaquie, A.; Pell, J.K.; Petit, S.; et al. A functional overview of conservation biological control. Crop Prot. 2017, 97, 145–158. [Google Scholar] [CrossRef]
- Gonçalves, F.; Carlos, C.; Crespi, A.; Villemant, C.; Trivellone, V.; Goula, M.; Canovai, R.; Zina, V.; Crespo, L.; Pinheiro, L.; et al. The functional agrobiodiversity in the Douro demarcated region viticulture: Utopia or reality? Arthropods as a Case-Study—A Review. Ciênc. Téc. Vitivinic. 2019, 34, 102–114. [Google Scholar] [CrossRef]
- Sáenz-Romo, M.G.; Veas-Bernal, A.; Martínez-García, H.; Ibáñez-Pascual, S.; Martínez-Villar, E.; Campos-Herrera, R.; Marco-Mancebón, V.S.; Pérez-Moreno, I. Effects of ground cover management on insect predators and pests in a Mediterranean vineyard. Insects 2019, 10, 421. [Google Scholar] [CrossRef]
- Begum, M.; Gurr, G.M.; Wratten, S.D.; Hedberg, P.R.; Nicol, H.I. Using selective food plants to maximize biological control of vineyard pests. J. Appl. Ecol. 2006, 43, 547–554. [Google Scholar] [CrossRef]
- Burgio, G.; Marchesini, E.; Reggiani, N.; Montepaone, G.; Schiatti, P.; Sommaggio, D. Habitat management of organic vineyard in northern Italy: The role of cover plants management on arthropod functional biodiversity. Bull. Entomol. Res. 2016, 106, 759–768. [Google Scholar] [CrossRef]
| Headings | Subheadings |
|---|---|
| 3. Selection of the vineyard planting site | 3.1. Climatic conditions |
| 3.2. Soil characteristics | |
| 3.3. Other habitat components | |
| 4. Host-plant-mediated pest control | 4.1. Choosing Vitis species or cultivar to plant |
| 4.2. How to grow grapevines | |
| 4.2.1. Fertilization and irrigation | |
| 4.2.2. Training systems and pruning | |
| 4.2.3. Harvest time | |
| 5. Interference with vineyard and grapevine colonization by pests | 5.1. Removal of pests’ source plants |
| 5.1.1. Alternative host plants | |
| 5.1.2. Host plants of pests, of which the grapevine is only a feeding host | |
| 5.1.3. Overwintering host plants for adults of pests | |
| 5.1.4. Summer host plants for adults of pests | |
| 5.2. Physical exclusion of pests | |
| 5.3. Diverting pests from grapevines | |
| 5.3.1. Keeping pests on their herbaceous hosts | |
| 5.3.2. Attracting pests to plant traps or artificial devices | |
| 6. Direct pests’ control | 6.1. Collection and killing of pests |
| 6.2. Killing pests by physical methods | |
| 7. Grapevine yellows diseases and their associated vectors | 7.1. Selection of vineyard planting site |
| 7.2. Choosing the grapevine cultivar to plant | |
| 7.3. Canopy leaf-density | |
| 7.4. Interference with vineyard and grapevine colonization by vectors | |
| 7.4.1. Removal of plants’ external sources of infectious vectors | |
| 7.4.2. Physical exclusion of vectors | |
| 7.4.3. Diverting vectors from grapevine | |
| 7.5. Direct vector control |
| Arthropod Pest | Control Strategy (N. of Subheading) | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3.1. | 3.2. | 3.3. | 4.1. | 4.2.1. | 4.2.2. | 4.2.3. | 5.1.1. | 5.1.2. | 5.1.3. | 5.1.4. | 5.2. | 5.3.1. | 5.3.2. | 6.1. | 6.2. | |
| Tetranychidae | ||||||||||||||||
| Eotetranychus carpini | X | X | X | |||||||||||||
| Panonychus ulmi | X | X | ||||||||||||||
| Eriophyidae | ||||||||||||||||
| Calepitrimerus vitis | X | |||||||||||||||
| Colomerus vitis | X | |||||||||||||||
| Thysanoptera | ||||||||||||||||
| Drepanothrips reuteri | X | |||||||||||||||
| Thrips spp. | X | X | ||||||||||||||
| Frankliniella occidentalis | X | |||||||||||||||
| Hemiptera Heteroptera | ||||||||||||||||
| Apolygus spinolae | X | |||||||||||||||
| Hemiptera Homoptera Auchenorrhyncha | ||||||||||||||||
| Erasmoneura vulnerata | X | X | X | |||||||||||||
| Hebata vitis | X | X | X | X | X | X | X | |||||||||
| Jacobiasca lybica | X | |||||||||||||||
| Metcalfa pruinosa | X | |||||||||||||||
| Stictocephala bisonia | X | |||||||||||||||
| Zygina rhamni | X | |||||||||||||||
| Hemiptera Homoptera Sternorrhyncha | ||||||||||||||||
| Daktulosphaira vitifoliae | X | X | X | X | X | |||||||||||
| Parthenolecanium corni | X | X | ||||||||||||||
| Planococcus ficus | X | X | X | X | X | X | ||||||||||
| Targionia vitis | X | |||||||||||||||
| Lepidoptera | ||||||||||||||||
| Argyrotaenia ljungiana | X | |||||||||||||||
| Cryptoblabes gnidiella | X | X | X | |||||||||||||
| Eupoecilia ambiguella | X | X | X | X | X | X | ||||||||||
| Hyles livornica | X | |||||||||||||||
| Hyphantria cunea | X | X | ||||||||||||||
| Lobesia botrana | X | X | X | X | X | X | X | X | X | X | ||||||
| Noctua spp. | X | X | X | |||||||||||||
| Ostrinia nubilalis | X * | X | ||||||||||||||
| Phyllocnistis vitegenella | X | |||||||||||||||
| Theresimima ampellophaga | X | X | X | X | ||||||||||||
| Coleoptera | ||||||||||||||||
| Altica ampelophaga | X | X | X | |||||||||||||
| Anomala vitis | X | X | ||||||||||||||
| Byctiscus betulae | X | X | ||||||||||||||
| Melolontha melolontha | X | X | X | |||||||||||||
| Otiorhynchus sulcatus | X | X | ||||||||||||||
| Pentodon bidens punctatus | X | X | X | |||||||||||||
| Popillia japonica | X | X | ||||||||||||||
| Sinoxylon perforans | X | |||||||||||||||
| Diptera | ||||||||||||||||
| Drosophila suzukii | X | X | X | X | ||||||||||||
| Vitisiella oenophila | X | X | ||||||||||||||
| Hymenoptera | ||||||||||||||||
| Ametastegia spp. | X | |||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pavan, F.; Cargnus, E.; Zandigiacomo, P. Vineyard Design, Cultural Practices and Physical Methods for Controlling Grapevine Pests and Disease Vectors in Europe: A Review. Insects 2026, 17, 113. https://doi.org/10.3390/insects17010113
Pavan F, Cargnus E, Zandigiacomo P. Vineyard Design, Cultural Practices and Physical Methods for Controlling Grapevine Pests and Disease Vectors in Europe: A Review. Insects. 2026; 17(1):113. https://doi.org/10.3390/insects17010113
Chicago/Turabian StylePavan, Francesco, Elena Cargnus, and Pietro Zandigiacomo. 2026. "Vineyard Design, Cultural Practices and Physical Methods for Controlling Grapevine Pests and Disease Vectors in Europe: A Review" Insects 17, no. 1: 113. https://doi.org/10.3390/insects17010113
APA StylePavan, F., Cargnus, E., & Zandigiacomo, P. (2026). Vineyard Design, Cultural Practices and Physical Methods for Controlling Grapevine Pests and Disease Vectors in Europe: A Review. Insects, 17(1), 113. https://doi.org/10.3390/insects17010113

