Topical RNA Interference Induces Mortality in the Cotton–Melon Aphid Aphis gossypii with No Adverse Effect on the Predator Propylea japonica
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Aphid Rearing
2.2. Total RNA Extraction and cDNA Synthesis
2.3. Targeted Gene Cloning and Quantitative Real-Time PCR (RT-qPCR)
2.4. Preparation of dsRNA
2.5. RNAi and Aphid Performance
2.6. Risk Assessment of the Non-Target Effect of Insect Predator P. japonica
2.7. Statistical Analysis
3. Results
3.1. Instar-Specific Expression Profiles of Target Genes
3.2. RNAi Efficiencies of Topical RNAi in Target Genes
3.3. Insecticidal Effect of Topical-Delivered RNAi on Aphids
3.4. Effects of Topical Delivered RNAi on Aphid Development and Reproduction
3.5. Effects of Topical RNAi-Treated of Aphids on the Predator Propylea japonica
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Gao, X.; Wang, L.; Jiang, W.; Su, H.; Jing, T.; Cui, J.; Zhang, L.; Yang, Y. Chromosome-level Genome Assemblies of Two Cotton-melon Aphid Aphis gossypii Biotypes Unveil Mechanisms of Host Adaption. Mol. Ecol. Resour. 2022, 22, 1120–1134. [Google Scholar] [CrossRef] [PubMed]
- Niu, R.; Zhu, X.; Wang, L.; Zhang, K.; Li, D.; Ji, J.; Niu, L.; Gao, X.; Luo, J.; Cui, J. Evaluation of Hamiltonella on Aphis gossypii Fitness Based on Life Table Parameters and RNA Sequencing. Pest Manag. Sci. 2023, 79, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Su, H.; Jiang, W.; Hu, D.; Ali, I.; Jin, T.; Yang, Y.; Ma, X. Symbiotic Microbial Studies in Diverse Populations of Aphis gossypii, Existing on Altered Host Plants in Different Localities during Different Times. Ecol. Evol. 2021, 11, 13948–13960. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Ma, C.; Luo, J.; Niu, L.; Hua, H.; Zhang, S.; Cui, J. Potential of Cucurbitacin B and Epigallocatechin Gallate as Biopesticides against Aphis gossypii. Insects 2021, 12, 32. [Google Scholar] [CrossRef]
- Chang, C.; Sun, X.; Tian, P.; Miao, N.; Zhang, Y.; Liu, X. Plant Secondary Metabolite and Temperature Determine the Prevalence of Arsenophonus Endosymbionts in Aphid Populations. Environ. Microbiol. 2022, 24, 3764–3776. [Google Scholar] [CrossRef]
- Tang, Q.; Li, X.; He, Y.; Ma, K. RNA Interference of NADPH-Cytochrome P450 Reductase Increases the Susceptibility of Aphis gossypii Glover to Sulfoxaflor. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 274, 109745. [Google Scholar] [CrossRef]
- Lv, N.; Li, R.; Cheng, S.; Zhang, L.; Liang, P.; Gao, X. The Gut Symbiont Sphingomonas Mediates Imidacloprid Resistance in the Important Agricultural Insect Pest Aphis gossypii Glover. BMC Biol. 2023, 21, 86. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, H.; Dong, W.; Gu, Z.; Wang, C.; Chen, A.; Shi, X.; Gao, X. Mutations in the nAChR Β1 Subunit and Overexpression of P450 Genes Are Associated with High Resistance to Thiamethoxam in Melon Aphid, Aphis gossypii Glover. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2022, 258, 110682. [Google Scholar] [CrossRef]
- Jiang, W.; Nasir, M.; Zhao, C. Variation of Insulin-related Peptides Accompanying the Differentiation of Aphis gossypii Biotypes and Their Expression Profiles. Ecol. Evol. 2023, 13, e10306. [Google Scholar] [CrossRef]
- Li, J.; An, Z.; Luo, J.; Zhu, X.; Wang, L.; Zhang, K.; Li, D.; Ji, J.; Niu, L.; Gao, X.; et al. Parasitization of Aphis gossypii Glover by Binodoxys Communis Gahan Causes Shifts in the Ovarian Bacterial Microbiota. Insects 2023, 14, 314. [Google Scholar] [CrossRef]
- Fire, A.; Xu, S.; Montgomery, M.K.; Kostas, S.A.; Driver, S.E.; Mello, C.C. Potent and Specific Genetic Interference by Double-Stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Baum, J.A.; Bogaert, T.; Clinton, W.; Heck, G.R.; Feldmann, P.; Ilagan, O.; Johnson, S.; Plaetinck, G.; Munyikwa, T.; Pleau, M.; et al. Control of Coleopteran Insect Pests through RNA Interference. Nat. Biotechnol. 2007, 25, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, G.; Wang-Pruski, G.; You, M. Phyllotreta striolata (Coleoptera: Chrysomelidae): Arginine Kinase Cloning and RNAi-Based Pest Control. Eur. J. Entomol. 2008, 105, 815–822. [Google Scholar] [CrossRef]
- Walshe, D.P.; Lehane, S.M.; Lehane, M.J.; Haines, L.R. Prolonged Gene Knockdown in the Tsetse Fly Glossina by Feeding Double Stranded RNA. Insect Mol. Biol. 2009, 18, 11–19. [Google Scholar] [CrossRef]
- Sun, H.; Li, H.; Zhang, X.; Liu, Y.; Chen, H.; Zheng, L.; Zhai, Y.; Zheng, H. The honeybee gut resistome and its role in antibiotic resistance dissemination. Integr. Zool. 2023, 18, 1014–1026. [Google Scholar] [CrossRef]
- Burand, J.P.; Hunter, W.B. RNAi: Future in Insect Management. J. Invertebr. Pathol. 2013, 112, S68–S74. [Google Scholar] [CrossRef]
- Gu, L.; Knipple, D.C. Recent Advances in RNA Interference Research in Insects: Implications for Future Insect Pest Management Strategies. Crop Prot. 2013, 45, 36–40. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Zhang, Z.; Ren, M.; Wang, Y.; Duan, Y.; Gao, Y.; Liu, Z.; Zhang, P.; Fan, R.; et al. The Development of an Egg-Soaking Method for Delivering dsRNAs into Spider Mites. Pestic. Biochem. Physiol. 2024, 201, 105905. [Google Scholar] [CrossRef]
- Lv, H.; Li, X.; Li, J.; Yu, C.; Zeng, Q.; Ning, G.; Wan, H.; Li, J.; Ma, K.; He, S. Overcoming Resistance in Insect Pest with a Nanoparticle-Mediated dsRNA and Insecticide Co-Delivery System. Chem. Eng. J. 2023, 475, 146239. [Google Scholar] [CrossRef]
- Liu, W.; Yu, Q.; Wang, C.; Zhu, X.; Wang, L.; Zhang, K.; Li, D.; Ji, J.; Luo, J.; Cui, J.; et al. Silencing the Rhythm Gene AgCLK-1 Reduced Feeding of Aphis gossypii. Int. J. Biol. Macromol. 2024, 254, 127777. [Google Scholar] [CrossRef]
- Tian, W.; Zhang, T.; Zhao, J.; Dong, Y.; Li, Y.; Zhao, Z.; Gao, F.; Wu, X.; Zhang, B.; Fang, Y.; et al. HIGS-mediated Crop Protection against Cotton Aphids. Plant Biotechnol. J. 2024, 23, pbi.14529. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Chen, W.; Hussain, S.; Shakir, S.; Tzin, V.; Adegbayi, F.; Ugine, T.; Fei, Z.; Jander, G. Horizontally Transferred Genes as RNA Interference Targets for Aphid and Whitefly Control. Plant Biotechnol. J. 2023, 21, 754–768. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.H.; Jing, X.; Luo, Y.; Douglas, A.E. Targeting Symbiosis-Related Insect Genes by RNAi in the Pea Aphid-Buchnera Symbiosis. Insect Biochem. Mol. Biol. 2018, 95, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Shen, J. Target Genes for RNAi in Pest Control: A Comprehensive Overview. Entomol. Gen. 2024, 44, 95–114. [Google Scholar] [CrossRef]
- Killiny, N.; Hajeri, S.; Tiwari, S.; Gowda, S.; Stelinski, L.L. Double-Stranded RNA Uptake through Topical Application, Mediates Silencing of Five CYP4 Genes and Suppresses Insecticide Resistance in Diaphorina citri. PLoS ONE 2014, 9, e110536. [Google Scholar] [CrossRef]
- Niu, J.; Yang, W.; Tian, Y.; Fan, J.; Ye, C.; Shang, F.; Ding, B.; Zhang, J.; An, X.; Yang, L.; et al. Topical dsRNA Delivery Induces Gene Silencing and Mortality in the Pea Aphid. Pest Manag. Sci. 2019, 75, 2873–2881. [Google Scholar] [CrossRef]
- Finetti, L.; Benetti, L.; Leyria, J.; Civolani, S.; Bernacchia, G. Topical Delivery of dsRNA in Two Hemipteran Species: Evaluation of RNAi Specificity and Non-Target Effects. Pestic. Biochem. Physiol. 2023, 189, 105295. [Google Scholar] [CrossRef]
- Mogilicherla, K.; Howell, J.L.; Palli, S.R. Improving RNAi in the Brown Marmorated Stink Bug: Identification of Target Genes and Reference Genes for RT-qPCR. Sci. Rep. 2018, 8, 3720. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Chen, R.-Y.; Jiang, Y.-K.; Wang, Z.-W.; Wang, J.-J.; Niu, J. Investigation of Potential Non-Target Effects to a Ladybeetle Propylea Japonica in the Scenario of RNAi-Based Pea Aphid Control. Entomol. Gen. 2023, 43, 79–88. [Google Scholar] [CrossRef]
- Yan, S.; Qian, J.; Cai, C.; Ma, Z.; Li, J.; Yin, M.; Ren, B.; Shen, J. Spray Method Application of Transdermal dsRNA Delivery System for Efficient Gene Silencing and Pest Control on Soybean Aphid Aphis glycines. J. Pest Sci. 2020, 93, 449–459. [Google Scholar] [CrossRef]
- Sapountzis, P.; Duport, G.; Balmand, S.; Gaget, K.; Jaubert-Possamai, S.; Febvay, G.; Charles, H.; Rahbé, Y.; Colella, S.; Calevro, F. New Insight into the RNA Interference Response against Cathepsin-L Gene in the Pea Aphid, Acyrthosiphon pisum: Molting or Gut Phenotypes Specifically Induced by Injection or Feeding Treatments. Insect Biochem. Mol. Biol. 2014, 51, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Fan, J.; Chen, Y.; Hou, M.; Chen, J. ilvE as a Potential RNAi Target to Inhibit Amino Acid Synthesis to Control the Wheat Aphid Sitobion miscanthi. Entomol. Gen. 2023, 43, 177–185. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Nanda, S.; Li, Z.; Li, Y.; Guo, M.; Chen, S.; Yang, C.; Pan, H. Oral Delivery of dsHvUSP Is a Promising Method for Henosepilachna vigintioctopunctata Control with No Adverse Effect on the Non-Target Insect Propylea Japonica. Entomol. Gen. 2023, 43, 157–165. [Google Scholar] [CrossRef]
- Chen, S.; Luo, X.; Nanda, S.; Yang, C.; Li, Z.; Zhang, Y.; Zhou, X.; Pan, H. RNAi-Based Biopesticides Against 28-Spotted Ladybeetle Henosepilachna vigintioctopunctata Does Not Harm the Insect Predator Propylea japonica. J. Agric. Food Chem. 2023, 71, 3373–3384. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Fu, W.; Li, N.; Zhang, F.; Liu, T.-X. Antioxidant Responses of Propylaea japonica (Coleoptera: Coccinellidae) Exposed to High Temperature Stress. J. Insect Physiol. 2015, 73, 47–52. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, Y.; Niu, L.; Ma, W.; Mannakkara, A.; Chen, L.; Lei, C. Bt Cotton Expressing Cry1Ac/Cry2Ab or Cry1Ac/Epsps Does Not Harm the Predator Propylaea japonica through Its Prey Aphis gossypii. Agric. Ecosyst. Environ. 2013, 179, 163–167. [Google Scholar] [CrossRef]
- Joga, M.R.; Zotti, M.J.; Smagghe, G.; Christiaens, O. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Front. Physiol. 2016, 7, 553. [Google Scholar] [CrossRef]
- Yu, N.; Christiaens, O.; Liu, J.; Niu, J.; Cappelle, K.; Caccia, S.; Huvenne, H.; Smagghe, G. Delivery of dsRNA for RNAi in Insects: An Overview and Future Directions. Insect Sci. 2013, 20, 4–14. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, K.; Zhou, Q. Dicer1 Is Crucial for the Oocyte Maturation of Telotrophic Ovary in Nilaparvata lugens (Stål) (Hemiptera: Geometroidea). Arch. Insect Biochem. Physiol. 2013, 84, 194–208. [Google Scholar] [CrossRef]
- Santos-Ortega, Y.; Killiny, N. Silencing of Sucrose Hydrolase Causes Nymph Mortality and Disturbs Adult Osmotic Homeostasis in Diaphorina citri (Hemiptera: Liviidae). Insect Biochem. Mol. Biol. 2018, 101, 131–143. [Google Scholar] [CrossRef]
- Yoon, J.; Koo, J.; George, S.; Palli, S.R. Evaluation of Inhibitor of Apoptosis Genes as Targets for RNAi-mediated Control of Insect Pests. Arch. Insect Biochem. Physiol. 2020, 104, e21689. [Google Scholar] [CrossRef]
- Niu, J.; Chen, R.; Wang, J. RNA Interference in Insects: The Link between Antiviral Defense and Pest Control. Insect Sci. 2024, 31, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Mo, D.; Chen, Y.; Jiang, N.; Shen, J.; Zhang, J. Investigation of Isoform Specific Functions of the V-ATPase a Subunit During Drosophila Wing Development. Front. Genet. 2020, 11, 723. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cheng, Y.; Fan, J.; Chen, J. Metabolic Relay Gene of Aphid and Primary Symbiont as RNAi Target Loci for Aphid Control. Front. Plant Sci. 2023, 13, 1092638. [Google Scholar] [CrossRef] [PubMed]
- Whitten, M.M. Novel RNAi Delivery Systems in the Control of Medical and Veterinary Pests. Curr. Opin. Insect Sci. 2019, 34, 1–6. [Google Scholar] [CrossRef]
- Flynt, A.S. Insecticidal RNA Interference, Thinking beyond Long dsRNA. Pest Manag. Sci. 2021, 77, 2179–2187. [Google Scholar] [CrossRef]
- Su, C.; Liu, S.; Sun, M.; Yu, Q.; Li, C.; Graham, R.I.; Wang, X.; Wang, X.; Xu, P.; Ren, G. Delivery of Methoprene-Tolerant dsRNA to Improve RNAi Efficiency by Modified Liposomes for Pest Control. ACS Appl. Mater. Interfaces 2023, 15, 13576–13588. [Google Scholar] [CrossRef]
- Palli, S.R. RNAi Turns 25: Contributions and Challenges in Insect Science. Front. Insect Sci. 2023, 3, 1209478. [Google Scholar] [CrossRef]
- Khajuria, C.; Ivashuta, S.; Wiggins, E.; Flagel, L.; Moar, W.; Pleau, M.; Miller, K.; Zhang, Y.; Ramaseshadri, P.; Jiang, C.; et al. Development and Characterization of the First dsRNA-Resistant Insect Population from Western Corn Rootworm, Diabrotica virgifera virgifera LeConte. PLoS ONE 2018, 13, e0197059. [Google Scholar] [CrossRef]
- Yoon, J.-S.; Mogilicherla, K.; Gurusamy, D.; Chen, X.; Chereddy, S.C.R.R.; Palli, S.R. Double-Stranded RNA Binding Protein, Staufen, Is Required for the Initiation of RNAi in Coleopteran Insects. Proc. Natl. Acad. Sci. USA 2018, 115, 8334–8339. [Google Scholar] [CrossRef]
- Jain, R.G.; Robinson, K.E.; Fletcher, S.J.; Mitter, N. RNAi-Based Functional Genomics in Hemiptera. Insects 2020, 11, 557. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.G.; Robinson, K.E.; Asgari, S.; Mitter, N. Current Scenario of RNAi-based Hemipteran Control. Pest Manag. Sci. 2021, 77, 2188–2196. [Google Scholar] [CrossRef] [PubMed]
Treatment | Larval Developmental Duration (d) | Pupation Rate (%) | Pupal Developmental Duration (d) | Emergence Rate (%) | Adult Fresh Weight (mg) | |
---|---|---|---|---|---|---|
Male | Female | |||||
CK | 6.08 ± 0.10 a | 100 a | 2.37 ± 0.05 a | 98 a | 5.13 ± 0.11 a | 5.70 ± 0.10 a |
dsATPE | 5.89 ± 0.09 a | 98 a | 2.35 ± 0.05 a | 100 a | 5.16 ± 0.10 a | 5.65 ± 0.13 a |
dsIAP | 6.10 ± 0.08 a | 100 a | 2.37 ± 0.04 a | 96 a | 5.13 ± 0.09 a | 5.81 ± 0.10 a |
dsCat | 6.26 ± 0.07 a | 98 a | 2.30 ± 0.04 a | 100 a | 5.04 ± 0.10 a | 5.62 ± 0.10 a |
dsilvE | 6.18 ± 0.09 a | 100 a | 2.24 ± 0.04 a | 98 a | 5.21 ± 0.07 a | 5.72 ± 0.06 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, C.; Jiao, B.; Xu, L.; Peng, Y.; Zhao, Y. Topical RNA Interference Induces Mortality in the Cotton–Melon Aphid Aphis gossypii with No Adverse Effect on the Predator Propylea japonica. Insects 2025, 16, 276. https://doi.org/10.3390/insects16030276
Zhan C, Jiao B, Xu L, Peng Y, Zhao Y. Topical RNA Interference Induces Mortality in the Cotton–Melon Aphid Aphis gossypii with No Adverse Effect on the Predator Propylea japonica. Insects. 2025; 16(3):276. https://doi.org/10.3390/insects16030276
Chicago/Turabian StyleZhan, Chong, Boya Jiao, Letian Xu, Yu Peng, and Yao Zhao. 2025. "Topical RNA Interference Induces Mortality in the Cotton–Melon Aphid Aphis gossypii with No Adverse Effect on the Predator Propylea japonica" Insects 16, no. 3: 276. https://doi.org/10.3390/insects16030276
APA StyleZhan, C., Jiao, B., Xu, L., Peng, Y., & Zhao, Y. (2025). Topical RNA Interference Induces Mortality in the Cotton–Melon Aphid Aphis gossypii with No Adverse Effect on the Predator Propylea japonica. Insects, 16(3), 276. https://doi.org/10.3390/insects16030276