Drosophila C Virus and La Jolla Virus Formulations for Plant Protection Against Spotted-Wing Drosophila
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Virus Formulation
3.2. Physicochemical Characterization of Virus Formulations
3.3. Morphology
3.4. Encapsulation Efficiency
3.5. Biological Efficacy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimitrov, D.S. Virus entry: Molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2004, 2, 109–122. [Google Scholar] [CrossRef]
- Roychoudhury, S.; Das, A.; Sengupta, P.; Dutta, S.; Roychoudhury, S.; Choudhury, A.P.; Ahmed, A.B.F.; Bhattacharjee, S.; Slama, P. Viral Pandemics of the Last Four Decades: Pathophysiology, Health Impacts and Perspectives. Int. J. Environ. Res. Public Health 2020, 17, 9411. [Google Scholar] [CrossRef]
- Dattani, S.; Spooner, F.; Ritchie, H.; Roser, M. Causes of Death. Available online: https://ourworldindata.org/causes-of-death (accessed on 28 October 2025).
- Wagemans, J.; Holtappels, D.; Vainio, E.; Rabiey, M.; Marzachì, C.; Herrero, S.; Ravanbakhsh, M.; Tebbe, C.C.; Ogliastro, M.; Ayllón, M.A.; et al. Going Viral: Virus-Based Biological Control Agents for Plant Protection. Annu. Rev. Phytopathol. 2022, 60, 21–42. [Google Scholar] [CrossRef] [PubMed]
- El-Wakeil, N.; Saleh, M.; Abu-hashim, M. Cottage Industry of Biocontrol Agents and Their Applications: Practical Aspects to Deal Biologically with Pests and Stresses Facing Strategic Crops; Springer Nature: Dordrecht, The Netherlands, 2019; pp. 1–466. [Google Scholar] [CrossRef]
- Bayramoğlu, Z.; Gençer, D.; Saruhan, I.; Taylan, Z.Ş.; Demir, I. A viral biopesticide from native Hyphantria cunea granulovirus (HycuGV) to control fall webworm (Hyphantria cunea, Drury, Lepidoptera: Arctiidae) under field conditions. Environ. Entomol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, S.; Hefferon, K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021, 13, 1697. [Google Scholar] [CrossRef] [PubMed]
- Alemany, R. Oncolytic Adenoviruses in Cancer Treatment. Biomedicines 2014, 2, 36–49. [Google Scholar] [CrossRef]
- Lee, C.S.; Bishop, E.S.; Zhang, R.; Yu, X.; Farina, E.M.; Yan, S.; Zhao, C.; Zeng, Z.; Shu, Y.; Wu, X.; et al. Adenovirus-mediated gene delivery: Potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis. 2017, 4, 43–63. [Google Scholar] [CrossRef]
- Giacca, M.; Zacchigna, S. Virus-mediated gene delivery for human gene therapy. J. Control. Release 2012, 161, 377–388. [Google Scholar] [CrossRef]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef]
- Szewczyk, B.; Hoyos-Carvajal, L.; Paluszek, M.; Skrzecz, I.; Lobo De Souza, M. Baculoviruses—Re-Emerging Biopesticides. Biotechnol. Adv. 2006, 24, 143–160. [Google Scholar] [CrossRef]
- Arthurs, S.; Dara, S.K. Microbial biopesticides for invertebrate pests and their markets in the United States. J. Invertebr. Pathol. 2019, 165, 13–21. [Google Scholar] [CrossRef]
- Beas-Catena, A.; Sánchez-Mirón, A.; García-Camacho, F.; Contreras-Gómez, A.; Molina-Grima, E. Baculovirus biopesticides: An overview. J. Anim. Plant Sci. 2014, 24, 362–373. [Google Scholar]
- Martínez-Balerdi, M.; Caballero, J.; Aguirre, E.; Caballero, P.; Beperet, I. Baculoviruses as Microbial Pesticides: Potential, Challenges, and Market Overview. Viruses 2025, 17, 917. [Google Scholar] [CrossRef] [PubMed]
- Kanzawa, T. Research into the Fruit-Fly Drosophila suzukii Matsumura; Yamanashi Prefecture Agricultural Experiment Station Report; NIHONMONO: Tokyo, Japan, 1935. [Google Scholar]
- Fraimout, A.; Debat, V.; Fellous, S.; Hufbauer, R.A.; Foucaud, J.; Pudlo, P.; Marin, J.-M.; Price, D.K.; Cattel, J.; Chen, X.; et al. Deciphering the routes of invasion of Drosophila suzukii by means of ABC random forest. Mol. Biol. Evol. 2017, 34, 980–996. [Google Scholar] [CrossRef]
- Nair, R.R.; Peterson, A.T. Mapping the global distribution of invasive pest Drosophila suzukii and parasitoid Leptopilina japonica: Implications for biological control. PeerJ 2023, 11, e15222. [Google Scholar] [CrossRef]
- Chacón-Cerdas, R.; Gonzalez-Herrera, A.; Alvarado-Marchena, L.; González-Fuentes, F. Report of the establishment of Drosophila suzukii (Matsumura, 1931) (Diptera: Drosophilidae) in Central America. Entomol. Commun. 2024, 6, ec06003. [Google Scholar] [CrossRef]
- Garcia, F.R.M.; Pinto, K.J.; de Brida, A.L.; da Rosa, B.R.; Suárez, L.d.C.; Núñez-Campero, S.R.; Buonocore-Biancheri, M.J.; Ovruski, S.M. Outlook on the progress of Drosophila suzukii (Diptera: Drosophilidae) biological control in South America. J. Econ. Entomol. 2025, 118, 2022–2031. [Google Scholar] [CrossRef] [PubMed]
- Atallah, J.; Teixeira, L.; Salazar, R.; Zaragoza, G.; Kopp, A. The Making of a Pest: The Evolution of a Fruit-Penetrating Ovipositor in Drosophila suzukii and Related Species. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132840. [Google Scholar] [CrossRef] [PubMed]
- Crava, C.M.; Romani, R.; Zanini, D.; Amati, S.; Sollai, G.; Crnjar, R.; Haase, A.; Paoli, M.; Rossi-Stacconi, M.V.; Rota-Stabelli, O.; et al. Exploring Multiple Sensory Systems in Ovipositors of Drosophila suzukii and Related Species with Different Egg-Laying Behaviour. bioRxiv 2019. [Google Scholar] [CrossRef]
- Crava, C.M.; Zanini, D.; Amati, S.; Sollai, G.; Crnjar, R.; Paoli, M.; Rossi-Stacconi, M.V.; Rota-Stabelli, O.; Tait, G.; Haase, A.; et al. Structural and transcriptional evidence of mechanotransduction in the Drosophila suzukii ovipositor. J. Insect Physiol. 2020, 125, 104088. [Google Scholar] [CrossRef]
- Ortiz, M.S.M.; Gandini, L.; Sabio, M.C.; Bennardo, L.E.; Matzkin, L.M.; Hasson, E.; Hurtado, J. Fruit-Penetrating Ability is Associated with the Number of Modified Lateral Bristles in the Ovipositor of Drosophila suzukii. Ecol. Evol. 2025, 15, e72107. [Google Scholar] [CrossRef]
- Knapp, L.; Mazzi, D.; Finger, R. The economic impact of Drosophila suzukii: Perceived costs and revenue losses of Swiss cherry, plum and grape growers. Pest Manag. Sci. 2020, 77, 978–1000, Correction in Pest Manag. Sci. 2021, 77, 3597. [Google Scholar] [CrossRef]
- Yeh, D.A.; Drummond, F.A.; Gómez, M.I.; Fan, X. The Economic Impacts and Management of Spotted Wing Drosophila (Drosophila suzukii): The Case of Wild Blueberries in Maine. J. Econ. Entomol. 2020, 113, 1262–1269. [Google Scholar] [CrossRef]
- Schlesener, D.C.H.; Wollmann, J.; Pazini, J.D.B.; Grützmacher, A.D.; Garcia, F.R.M. Effects of insecticides on adults and eggs of Drosophila suzukii (Diptera, Drosophilidae). Rev. Colomb. Entomol. 2017, 43, 208–214. [Google Scholar] [CrossRef]
- Haviland, D.R.; Beers, E.H. Chemical Control Programs for Drosophila suzukii that Comply with International Limitations on Pesticide Residues for Exported Sweet Cherries. J. Integr. Pest Manag. 2012, 3, F1–F6. [Google Scholar] [CrossRef]
- Abdelhafiz, I.; Kessel, T.; Vilcinskas, A.; Lee, K.-Z. La Jolla Virus: The Pathology and Transmission in Its Host Drosophila suzukii. Viruses 2025, 17, 408. [Google Scholar] [CrossRef] [PubMed]
- Slack, J.; Arif, B.M. The Baculoviruses Occlusion-Derived Virus: Virion Structure and Function. Adv. Virus Res. 2007, 69, 99–165. [Google Scholar] [CrossRef]
- Wilson, K.; Grzywacz, D.; Curcic, I.; Scoates, F.; Harper, K.; Rice, A.; Paul, N.; Dillon, A. A novel formulation technology for baculoviruses protects biopesticide from degradation by ultraviolet radiation. Sci. Rep. 2020, 10, 13301. [Google Scholar] [CrossRef]
- akubowska, A.K.; Murillo, R.; Carballo, A.; Williams, T.; van Lent, J.W.; Caballero, P.; Herrero, S. Iflavirus increases its infectivity and physical stability in association with baculovirus. PeerJ 2016, 4, e1687. [Google Scholar] [CrossRef] [PubMed]
- Jousset, F.-X.; Bergoin, M.; Revet, B. Characterization of the Drosophila C Virus. J. Gen. Virol. 1977, 34, 269–283. [Google Scholar] [CrossRef]
- Carrau, T.; Lamp, B.; Reuscher, C.M.; Vilcinskas, A.; Lee, K.-Z. Organization of the Structural Protein Region of La Jolla Virus Isolated from the Invasive Pest Insect Drosophila suzukii. Viruses 2021, 13, 740. [Google Scholar] [CrossRef]
- Bruner-Montero, G.; Luque, C.M.; Cesar, C.S.; Ding, S.D.; Day, J.P.; Jiggins, F.M. Hunting Drosophila viruses from wild populations: A novel isolation approach and characterisation of viruses. PLoS Pathog. 2023, 19, e1010883. [Google Scholar] [CrossRef]
- Linscheid, Y.; Kessel, T.; Vilcinskas, A.; Lee, K.-Z. Pathogenicity of La Jolla Virus in Drosophila suzukii following Oral Administration. Viruses 2022, 14, 2158. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-Z.; Vilcinskas, A. Analysis of virus susceptibility in the invasive insect pest Drosophila suzukii. J. Invertebr. Pathol. 2017, 148, 138–141. [Google Scholar] [CrossRef] [PubMed]
- Schetelig, M.F.; Lee, K.; Otto, S.; Talmann, L.; Stökl, J.; Degenkolb, T.; Vilcinskas, A.; Halitschke, R. Environmentally sustainable pest control options for Drosophila suzukii. J. Appl. Entomol. 2017, 142, 3–17. [Google Scholar] [CrossRef]
- Farm to Fork: New Rules for Micro-Organisms. Available online: https://ec.europa.eu/commission/presscorner/detail/sl/qanda_22_852 (accessed on 21 November 2025).
- Lothert, K.; Pagallies, F.; Feger, T.; Amann, R.; Wolff, M.W. Selection of chromatographic methods for the purification of cell culture-derived Orf virus for its application as a vaccine or viral vector. J. Biotechnol. 2020, 323, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Lothert, K.; Offersgaard, A.F.; Pihl, A.F.; Mathiesen, C.K.; Jensen, T.B.; Alzua, G.P.; Fahnøe, U.; Bukh, J.; Gottwein, J.M.; Wolff, M.W. Development of a downstream process for the production of an inactivated whole hepatitis C virus vaccine. Sci. Rep. 2020, 10, 16261. [Google Scholar] [CrossRef]
- Marichal-Gallardo, P.; Pieler, M.M.; Wolff, M.W.; Reichl, U. Steric exclusion chromatography for purification of cell culture-derived influenza A virus using regenerated cellulose membranes and polyethylene glycol. J. Chromatogr. A 2017, 1483, 110–119. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jochmann, M.; Sölmann, S.; Gröb, T.; Wortmann, M.; Lee, K.-Z.; Wolff, M.W.; Keil, W.; Patel, A.V. Drosophila C Virus and La Jolla Virus Formulations for Plant Protection Against Spotted-Wing Drosophila. Insects 2025, 16, 1258. https://doi.org/10.3390/insects16121258
Jochmann M, Sölmann S, Gröb T, Wortmann M, Lee K-Z, Wolff MW, Keil W, Patel AV. Drosophila C Virus and La Jolla Virus Formulations for Plant Protection Against Spotted-Wing Drosophila. Insects. 2025; 16(12):1258. https://doi.org/10.3390/insects16121258
Chicago/Turabian StyleJochmann, Monja, Sven Sölmann, Thorsten Gröb, Martin Wortmann, Kwang-Zin Lee, Michael W. Wolff, Waldemar Keil, and Anant V. Patel. 2025. "Drosophila C Virus and La Jolla Virus Formulations for Plant Protection Against Spotted-Wing Drosophila" Insects 16, no. 12: 1258. https://doi.org/10.3390/insects16121258
APA StyleJochmann, M., Sölmann, S., Gröb, T., Wortmann, M., Lee, K.-Z., Wolff, M. W., Keil, W., & Patel, A. V. (2025). Drosophila C Virus and La Jolla Virus Formulations for Plant Protection Against Spotted-Wing Drosophila. Insects, 16(12), 1258. https://doi.org/10.3390/insects16121258

