Effect of Metarhizium anisopliae IPPM202 Extracellular Proteinases on Midgut of Locusta migratoria manilensis
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Metarhizium anisopliae Strain
2.2. Insect Specimen
2.3. Bait Preparation and Treatments
2.4. Metarhizium anisopliae Toxicity Bioassay
2.5. Determination of Gut Epithelial Structure After Feeding on Treatments
2.6. Measurement of Enzyme Activity After Feeding on Treatments
2.7. Data Analysis
3. Results
3.1. Metarhizium Anisopliae Toxicity
3.2. Gut Epithelial Structure After Feeding on Treatments
3.3. Enzyme Activity After Feeding on Treatments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kepler, R.M.; Sung, G.H.; Ban, S.; Nakagiri, A.; Chen, M.J.; Huang, B.; Li, Z.; Spatafora, J.W. New teleomorph combinations in the entomopathogenic genus Metacordyceps. Mycologia 2012, 104, 182–197. [Google Scholar] [CrossRef]
- Shan, L.T.; Feng, M.G. Evaluation of the biocontrol potential of various Metarhizium isolates against green peach aphid Myzus persicae (Homoptera: Aphididae). Pest Manag. Sci. 2010, 66, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 2007, 17, 879–920. [Google Scholar] [CrossRef]
- Roberts, D.W.; St Leger, R.J. Metarhizium spp., Cosmopolitan insect-pathogenic fungi: Mycological aspects. Adv. Appl. Microbiol. 2004, 54, 1–70. [Google Scholar] [PubMed]
- Milner, R.J.; Lim, R.P.; Hunter, D.M. Risks to the aquatic ecosystem from the application of Metarhizium anisopliae for locust control in Australia. Pest Manag. Sci. Former. Pestic. Sci. 2002, 58, 718–723. [Google Scholar] [CrossRef]
- Vestergaard, S.; Gillespie, A.T.; Butt, T.M.; Schreiter, G.; Eilenberg, J. Pathogenicity of the hyphomycete fungi Verticillium lecanii and Metarhizium anisopliae to the western flower thrips, Frankliniella occidentalis. Biocontrol Sci. Technol. 1995, 5, 185–192. [Google Scholar] [CrossRef]
- St Leger, R.J.; Charnley, A.K.; Cooper, R.M. Characterization of cuticle-degrading proteases produced by the entomopathogen Metarhizium anisopliae. Arch. Biochem. Biophys. 1987, 253, 221–232. [Google Scholar] [CrossRef]
- Gao, B.J.; Mou, Y.N.; Tong, S.M.; Ying, S.H.; Feng, M.G. Subtilisin-like Pr1 proteases marking the evolution of pathogenicity in a wide-spectrum insect-pathogenic fungus. Virulence 2020, 11, 365–380. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Z.; Xia, Y.; Lu, X.; Pei, Y. Purification and characterization of cuticle-degrading protease (chymoelastase, Pr1) of Beauveria bassiana. Mycosystema 2000, 19, 254–260. [Google Scholar]
- Santi, L.; da Silva, W.O.B.; Berger, M.; Guimarães, J.A.; Schrank, A.; Vainstein, M.H. Conidial surface proteins of Metarhizium anisopliae: Source of activities related with toxic effects, host penetration and pathogenesis. Toxicon 2010, 55, 874–880. [Google Scholar] [CrossRef]
- Gillespie, J.P.; Bateman, R.; Charnley, A.K. Role of cuticle-degrading proteases in the virulence of Metarhizium spp. for the desert locust, Schistocerca gregaria. J. Invertebr. Pathol. 1998, 71, 128–137. [Google Scholar] [CrossRef]
- Zhao, H.; Ullah, H.; McNeill, M.R.; Du, G.; Hao, K.; Tu, X.; Zhang, Z. Inhibitory effects of plant trypsin inhibitors Msti-94 and Msti-16 on Therioaphis trifolii (Monell) (Homoptera: Aphididae) in Alfalfa. Insects 2019, 10, 154. [Google Scholar] [CrossRef] [PubMed]
- Pekkarinen, A.I.; Jones, B.L. Trypsin-like proteinase produced by Fusarium culmorum grown on grain proteins. J. Agric. Food Chem. 2002, 50, 3849–3855. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, S.; Shinoda, S. Microbial metalloproteases and pathogenesis. Microb. Infect. 2000, 2, 91–98. [Google Scholar] [CrossRef] [PubMed]
- St Leger, R.J.; Bidochka, M.J.; Roberts, D.W. Isoforms of the cuticle-degrading Pr1 proteinase and production of a metalloproteinase by Metarhizium anisopliae. Arch. Biochem. Biophys. 1994, 313, 1–7. [Google Scholar] [CrossRef]
- Qazi, S.S.; Khachatourians, G.G. Hydrated conidia of Metarhizium anisopliae release a family of metalloproteases. J. Invertebr. Pathol. 2007, 95, 48–59. [Google Scholar] [CrossRef]
- Asaad, N.; Bethel, P.A.; Coulson, M.D.; Dawson, J.E.; Ford, S.J.; Gerhardt, S.; Grist, M.; Hamlin, G.A.; James, M.J.; Jones, E.V.; et al. Dipeptidyl nitrile inhibitors of Cathepsin L. Bioorganic Med. Chem. Lett. 2009, 19, 4280–4283. [Google Scholar] [CrossRef]
- St Leger, R.J.; Joshi, L.; Bidochka, M.J.; Rizzo, N.W.; Roberts, D.W. Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by Metarhizium anisopliae in infected insect cuticles. Appl. Environ. Microbiol. 1996, 62, 1257–1264. [Google Scholar] [CrossRef]
- Griesch, J.; Vilcinskas, A. Proteases released by entomopathogenic fungi impair phagocytic activity, attachment and spreading of plasmatocytes isolated from haemolymph of the greater wax moth Galleria mellonella. Biocontrol Sci. Technol. 1998, 8, 517–531. [Google Scholar] [CrossRef]
- Qin, H.R.; He, S.Y.; Wu, J.; Li, J.L. Pathogenic mechanism of Bombus patagiatus infected by Nosema ceranae. Sci. Agric. Sin. 2012, 45, 4697–4704. [Google Scholar]
- Zhang, Q.; Wang, Y.; Li, K.B.; Yin, J.; Cao, Y.Z.; Liu, C.Q. Preliminary analysis of the cellular morphological change in the midgut of Holotrichia parallela larvae fed with Bt. Plant Prot. 2011, 37, 126–129. [Google Scholar]
- Cao, W.; Wang, G.; Zhen, W.; Wang, R.; Song, J.; Wang, J.; Feng, S. Comparison of toxicity of Beauveria bassiana and histopathological changes of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae infected in different inoculation ways. Acta Entomol. Sin. 2011, 54, 409–415. [Google Scholar]
- Schrank, A.; Vainstein, M.H. Metarhizium anisopliae enzymes and toxins. Toxicon 2010, 56, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Quesada-Moraga, E.; Carrasco-Díaz, J.A.; Santiago-Álvarez, C. Insecticidal and antifeedant activities of proteins secreted by entomopathogenic fungi against Spodoptera littoralis (Lep., Noctuidae). J. Appl. Entomol. 2006, 130, 442–452. [Google Scholar] [CrossRef]
- Lou, Y. Histopathologic Research of Locusta migratoria manilensis Meyen Infected by Metarhizium acridum Through Oral Feeding. Ph.D. Thesis, Chinese Academy of Agricultural, Beijing, China, 2013. [Google Scholar]
- Duan, S.Y. Immune Regulation Mechanism of LmserpinB3 Gene on Locusts Migratory Against Metarhizium anisopliae Infection and Its dsRNA Application. Ph.D. Thesis, Northeast Agricultural University, Heilongjiang, China, 2023. [Google Scholar]
- Tian, Y.; Li, B.B.; Li, S.; Nong, X.Q.; Zhang, Z.H.; Liu, Y.H.; Wang, G.J. Effects of FK506-binding protein FKBP52 on Metarhizium anisopliae infection of Locusta migratoria manilensis. Plant Prot. 2021, 47, 37–45. [Google Scholar] [CrossRef]
- Luo, W.; Xue, C. Phenol Oxidase in Insects and Its Inhibitor; Science Press: Beijing, China, 2010. [Google Scholar]
- Abro, N.A.; Wang, G.; Ullah, H.; Long, G.L.; Hao, K.; Nong, X.; Cai, N.; Tu, X.; Zhang, Z. Influence of Metarhizium anisopliae (IMI330189) and Mad1 protein on enzymatic activities and Toll-related genes of migratory locust. Environ. Sci. Pollut. Res. 2019, 26, 17797–17808. [Google Scholar] [CrossRef]
- Li, Z.; Shen, H.; Jiang, Q.; Ji, B. A study on the activities of endogenous enzymes of protective system in some insects. Acta Entomol. Sin. 1995, 37, 399–403. [Google Scholar]
- Xu, Y.L.; Li, W.C. Research progress in activation mechanisms of phenoloxidase in insects. J. Anhui Agric. Sci. 2010, 38, 14844–14846. [Google Scholar]
- Wiens, M.; Koziol, C.; Batel, R.; Müller, W.E. Phenylalanine hydroxylase from the sponge Geodia cydonium: Implication for allorecognition and evolution of aromatic amino acid hydroxylases. Dev. Comp. Immunol. 1998, 22, 469–478. [Google Scholar] [CrossRef]
- Tanaka, S.; Endo, H.; Adegawa, S.; Kikuta, S.; Sato, R. Functional characterization of Bacillus thuringiensis Cry toxin receptors explains resistance in insects. FEBS J. 2016, 283, 4474–4490. [Google Scholar] [CrossRef]
- Bravo, A.; Gómez, I.; Porta, H.; García-Gómez, B.I.; Rodriguez-Almazan, C.; Pardo, L.; Soberón, M. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microb. Biotechnol. 2013, 6, 17–26. [Google Scholar] [CrossRef]
- Sousa, M.E.C.; Santos, F.A.; Wanderley-Teixeira, V.; Teixeira, Á.A.; de Siqueira, H.Á.A.; Alves, L.C.; Torres, J.B. Histopathology and ultrastructure of midgut of Alabama argillacea (Hübner) (Lepidoptera: Noctuidae) fed Bt-cotton. J. Insect Physiol. 2010, 56, 1913–1919. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, H.; Wu, K.; Zhao, K.; Peng, Y.; Guo, Y. Insecticidal activity of transgenic sck and cry1Ac/sck rice to Chilo suppressalis (Walker) and pathologic changes in their mid-gut tissues. Chin. J. Appl. Environ. Biol. 2007, 13, 220–223. [Google Scholar]
- Li, F.; Ye, G.; Wu, Q.; Peng, Y.; Chen, X. Histopathological changes in the midgut of the rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) larvae feeding on transgenic Bt rice. Acta Entomol. Sin. 2007, 50, 1070–1076. [Google Scholar]
- Sutherland, P.W.; Harris, M.O.; Markwick, N.P. Effects of starvation and the Bacillus thuringiensis endotoxin Cry1Ac on the midgut cells, feeding behavior, and growth of lightbrown apple moth larvae. Ann. Entomol. Soc. Am. 2003, 96, 250–264. [Google Scholar] [CrossRef]
- Liang, G.; Tan, W.; Guo, Y. Pathological changes in midgut tissues of cotton bollworm larvae after intaking transgenic Bt cotton. Cotton Sci. 2001, 13, 138–141. [Google Scholar]





| Treatments | Inhibited Proteases of M. anisopliae | Conidia Concentration in Diet (Spores/g Bran) | Inhibitor Concentration (μg/g Bran) |
|---|---|---|---|
| IPPM202 | 2.5 × 108 | 0 | |
| IPPM202/TPCK | Pr1 | 2.5 × 108 | 3.52 |
| IPPM202/APMSF | Pr2 | 2.5 × 108 | 2.53 |
| IPPM202/EDTA | Pr3 | 2.5 × 108 | 146.13 |
| IPPM202/CI1 | Pr4 | 2.5 × 108 | 19.02 |
| TPCK | 0 | 3.52 | |
| APMSF | 0 | 2.53 | |
| EDTA | 0 | 146.13 | |
| CI1 | 0 | 19.02 | |
| Control (Bait-only) | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Wang, Z.; Davaasambuu, U.; Li, H.; McNeill, M.R.; Cao, G.; Tu, X.; Liu, C.; Zhang, Z.; Wang, G.; et al. Effect of Metarhizium anisopliae IPPM202 Extracellular Proteinases on Midgut of Locusta migratoria manilensis. Insects 2025, 16, 1111. https://doi.org/10.3390/insects16111111
Huang L, Wang Z, Davaasambuu U, Li H, McNeill MR, Cao G, Tu X, Liu C, Zhang Z, Wang G, et al. Effect of Metarhizium anisopliae IPPM202 Extracellular Proteinases on Midgut of Locusta migratoria manilensis. Insects. 2025; 16(11):1111. https://doi.org/10.3390/insects16111111
Chicago/Turabian StyleHuang, Lei, Zhenghao Wang, Undarmaa Davaasambuu, Hongmei Li, Mark Richard McNeill, Guangchun Cao, Xiongbing Tu, Changzhong Liu, Zehua Zhang, Guangjun Wang, and et al. 2025. "Effect of Metarhizium anisopliae IPPM202 Extracellular Proteinases on Midgut of Locusta migratoria manilensis" Insects 16, no. 11: 1111. https://doi.org/10.3390/insects16111111
APA StyleHuang, L., Wang, Z., Davaasambuu, U., Li, H., McNeill, M. R., Cao, G., Tu, X., Liu, C., Zhang, Z., Wang, G., & Chang, J. (2025). Effect of Metarhizium anisopliae IPPM202 Extracellular Proteinases on Midgut of Locusta migratoria manilensis. Insects, 16(11), 1111. https://doi.org/10.3390/insects16111111

