Expression Levels of Heat-Shock Proteins in Apis mellifera jemenetica and Apis mellifera carnica Foragers in the Desert Climate of Saudi Arabia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Honeybee Colonies Preparations
2.3. Forager Honeybee Sampling
2.4. RNA Extraction and cDNA Synthesis
2.5. Primer Design and Real-Time PCR
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Porcelli, D.; Gaston, K.J.; Butlin, R.K.; Snook, R.R. Local adaptation of reproductive performance during thermal stress. J. Evol. Biol. 2017, 30, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Insolia, L.; Molinari, R.; Rogers, S.R.; Williams, G.R.; Chiaromonte, F.; Calovi, M. Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States. Sci Rep. 2022, 12, 20787. [Google Scholar] [CrossRef] [PubMed]
- UNEP. Emission Gap Report: The Closing Window: Climate Crisis Calls for Rapid Transformation of Societies; United Nation Environmental Program: Nairobi, Kenya, 2022; ISBN 978-92-807-3979-4. [Google Scholar]
- Almazroui, M.; Nazrul, I.; Athar, H.; Jones, P.; Ashfaqur, M. Recent climate change in the Arabian Peninsula: Annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int. J. Climatol. 2012, 32, 953–966. [Google Scholar] [CrossRef]
- POMEP. Climatic Data for Saudi Arabia: Presidency of Metrology and Environmental Protection; Ministry of Defense and Aviation: Riyadh, Saudi Arabia, 2020. [Google Scholar]
- Ruttner, F. Biogeography and Taxonomy of Honeybees, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1988; p. 284. ISBN 978-3-64272651-4. [Google Scholar]
- Han, F.; Wallberg, A.; Webster, M.T. From where did the Western honeybee (Apis mellifera) originate? Ecol. Evol. 2012, 2, 1949–1957. [Google Scholar] [CrossRef]
- Ilyasov, R.A.; Lee, M.; Takahashi, J.; Kwon, H.W.; Nikolenko, A.G. A revision of subspecies structure of western honeybee Apis mellifera. Saudi J. Biol. Sci. 2020, 27, 3615–3621. [Google Scholar] [CrossRef]
- Angilletta, M.J.; Wilson, R.S.; Navas, C.A.; James, R.S. Tradeoffs and the evolution of thermal reaction norms. Trends Ecol. Evol. 2003, 18, 234–240. [Google Scholar] [CrossRef]
- Dogantzis, K.A.; Tiwari, T.; Conflitti, I.M.; Dey, A.; Patch, H.M.; Muli, E.M.; Garnery, L.; Whitfield, C.W.; Stolle, E.; Alqarni, A.S. Thrice out of Asia and the adaptive radiation of the western honey bee. Sci. Adv. 2021, 7, eabj2151. [Google Scholar] [CrossRef]
- Severson, D.W.; Erickson, E.H.; Williamson, J.L.; Aiken, J.M. Heat stress induced enhancement of heat shock protein gene activity in the honey bee (Apis mellifera). Experientia 1990, 46, 737–739. [Google Scholar] [CrossRef]
- Binda, O. On your histone mark, SET, methylate! Epigenetica 2013, 8, 457–463. [Google Scholar] [CrossRef]
- Southwick, E.E. The honey bee cluster as a homeothermic superorganism. Comp. Biochem. Physiol. Part A Physiol. 1983, 75, 641–645. [Google Scholar] [CrossRef]
- Kronenberg, F.; Heller, H.C. Colonial thermoregulation in honey bees (Apis mellifera). J. Comp. Physiol. 1982, 148, 65–76. [Google Scholar] [CrossRef]
- Tautz, J.; Maier, S.; Groh, C.; Rossler, W.; Brockmann, A. Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development. Proc. Natl. Acad. Sci. USA 2003, 100, 7343–7347. [Google Scholar] [CrossRef] [PubMed]
- Stabentheiner, A.; Kovac, H.; Mandl, M.; Kaefar, H. Coping with the cold and fighting the heat: Thermal homeostasis of a superorganism, the honeybee colony. J. Comp. Physiol. A 2021, 207, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, G.; Guo, D.; Li, H.; Liu, Q.; Xu, B.; Guo, X. Response mechanisms to heat stress in bees. Apidologie 2021, 52, 388–399. [Google Scholar] [CrossRef]
- Winston, M.L. The Biology of the Honeybee, 1st ed.; Harvard University Press: Cambridge, MA, USA, 1991; p. 294. ISBN 9780674074095. [Google Scholar]
- Elekonich, M.M. Extreme thermotolerance and behavioral induction of 70-kDa heat shock proteins and their encoding genes in honey bees. Cell Stress Chaperones 2009, 14, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Dickman, M.J.; Kucharski, R.; Maleszka, R.; Hurd, P.J. Extensive histone post-translational modification in honey bees. Insect Biochem. Mol. Biol. 2013, 43, 125–137. [Google Scholar] [CrossRef]
- Bloch, G.; Grozinger, C.M. Social molecular pathways and the evolution of bee societies. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 2155–2170. [Google Scholar] [CrossRef]
- Ruttner, H. Technische Empfehlungen zur Leistungsprüfung von Bienenvölkern. In Proceedings of the Paarungskontrolle und Selektion bei der Honigbiene: Internationales Symposium, Lunz am See, Austria, 31 July–5 August 1972. [Google Scholar]
- Alattal, Y.; Alghamdi, A.; Alsharhi, M.; Fuchs, S. Morphometric characterisation of the native Honeybee, Apis mellifera Linnaeus, 1758, of Saudi Arabia. Zool. Middle East 2014, 60, 226–235. [Google Scholar] [CrossRef]
- Alattal, Y.; Alghamdi, A. Evidence for sub-populations of Apis mellifera jemenitica colonies along the Red Sea coast of Saudi Arabia. Bull. Insectology 2022, 71, 7–14. [Google Scholar]
- Alqarni, A.S.; Hannan, M.A.; Owayss, A.A.; Engel, M.S. The indigenous honey bees of Saudi Arabia (Hymenoptera, Apidae, Apis mellifera jemenitica Ruttner): Their natural history and role in beekeeping. ZooKeys 2011, 134, 83–98. [Google Scholar]
- Ali, M. Comparative study for evaluating two honey bee races, Apis mellifera jementica (indigenous race) and Apis mellifera carnica (Carniolan race) in brood production, population development and foraging activity under the environmental conditions of the central region of the Kingdom of Saudi Arabia. Ann. Agric. Sci. 2011, 56, 127–134. [Google Scholar]
- Alqarni, A.S. Tolerance of summer temperature in imported and indigenous honeybee Apis mellifera L. races in central Saudi Arabia. Saudi J. Biol. Sci. 2006, 13, 123–127. [Google Scholar]
- Ali, H.; Alqarni, A.S.; Owayss, A.A.; Hassan, A.M.; Smith, B.S. Osmotic concentration in three races of honey bee, Apis mellifera L. under environmental conditions of arid zone. Saudi J. Biol. Sci. 2017, 24, 1081–1085. [Google Scholar] [CrossRef]
- Alattal, Y.; Alghamdi, A. Impact of temperature extremes on survival of indigenous and exotic honey bee subspecies, Apis mellifera, under desert and semiarid climates. Bull. Insectology 2015, 68, 219–222. [Google Scholar]
- Chen, C.H.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.H.H. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- MoEP. Import Data of Honeybees from Different Sources; Central Department of Statistics and Information, Ministry of Economy and Planning: Riyadh, Saudi Arabia, 2022. [Google Scholar]
- Alattal, Y.; Alghamdi, A.; Alsharni, M. Population Structure of the Yemeni Honeybee (Apis mellifera jemenitica) Entails an Urgent Conservative Strategy. J. Entomol. 2014, 11, 163–169. [Google Scholar] [CrossRef]
- Alattal, Y.Z.; Alghamdi, A.A. Linking Histone Methylation States and hsp Transcriptional Regulation in Thermo-Tolerant and Thermo-Susceptible A. mellifera L. Subspecies in Response to Heat Stress. Insects 2023, 14, 225. [Google Scholar] [CrossRef]
- Madrigal-Matute, J.; Martin-Ventura, J.L.; Blanco-Colio, L.M.; Egido, J.; Michel, J.B.; Meilhac, O. Heat-shock proteins in cardiovascular disease. Adv. Clin. Chem. 2011, 54, 3–29. [Google Scholar]
- Zhao, L.; Jones, W.A. Expression of heat shock protein genes in insect stress responses. Invert. Survival. J. 2012, 9, 93–101. [Google Scholar]
- Perez, R.; Aron, S. Adaptations to thermal stress in social insects: Recent advances and future directions. Biol. Rev. 2020, 95, 1535–1553. [Google Scholar] [CrossRef]
- Jing, X.Y.; Li, F.M. Identifying Heat Shock Protein Families from Imbalanced Data by Using Combined Features. Comput. Math. Methods Med. 2020, 2020, 8894478. [Google Scholar] [CrossRef] [PubMed]
- Mikhail, P.; Stepanenko, I.; Nikolay, K. Heat Shock Proteins. In Brenner’s Encyclopedia of Genetics, 2nd ed.; Maloy, S., Hughes, K., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 402–405. ISBN 9780080961569. [Google Scholar]
- Khadir, A.; Kavalakatt, S.; Cherian, P.; Warsame, S.; Abubaker, J.A.; Dehbi, M.; Tiss, A. Physical exercise enhanced heat shock protein 60 expression and attenuated inflammation in the adipose tissue of human diabetic obese. Front. Endocrinol. 2018, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.M.; Zhang, Q.; Zhang, Y.L.; Zhang, G.Z.; Zhang, Z.; Yu, Q.Y. Heat Shock Protein 70 Family in Response to Multiple Abiotic Stresses in the Silkworm. Insects 2021, 12, 928. [Google Scholar] [CrossRef] [PubMed]
- Aquino, D.A.; Klipfel, A.A.; Brosnan, C.F.; Norton, W.T. The 70-kDa heat shock cognate protein (HSC70) is a major constituent of the central nervous system and is up-regulated only at the mRNA level in acute experimental autoimmune encephalomyelitis. J. Neurochem. 1993, 61, 1340–1348. [Google Scholar] [CrossRef]
- Alagar-Boopathy, L.R.; Jacob-Tomas, S.; Alecki, C.; Vera, M. Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. J. Biol. Chem. 2022, 298, 101796. [Google Scholar] [CrossRef]
- Sen-Sarma, M.; Whitfield, C.W.; Robinson, G.E. Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees. BMC Genome 2007, 8, 200. [Google Scholar] [CrossRef]
- Feder, M.E.; Blair, N.; Figeuras, H. Natural thermal stress and heat-shock protein expression in Drosophila larvae and pupae. Funct. Ecol. 2007, 11, 90–100. [Google Scholar] [CrossRef]
- Alqarni, A.S.; Ali, H.; Iqbal, J.; Owayss, A.A.; Smith, B.H. Expression of heat shock proteins in adult honey bee (Apis mellifera L.) workers under hot-arid subtropical ecosystems. Saudi J. Biol. Sci. 2019, 26, 1372–1376. [Google Scholar] [CrossRef]
- Kovac, H.; Käfer, H.; Stabentheiner, A.; Costa, C. Metabolism and upper thermal limits of Apis mellifera carnica and A. m. ligustica. Apidologie 2014, 45, 664–677. [Google Scholar] [CrossRef]
- Meixner, M.D.; Pinto, M.A.; Bouga, M.; Kryger, P.; Ivanova, E.; Fuchs, S. Standard methods for characterising subspecies and ecotypes of Apis mellifera. J. Apic. Res. 2013, 52, 1–28. [Google Scholar] [CrossRef]
- Bouga, M.; Alaux, C.; Bienkowska, M.; Büchler, R.; Carreck, N.L.; Cauia, E.; Chlebo, R.; Dahle, B.; Dall’Olio, R.; De la Rúa, P.; et al. A review of methods for discrimination of honey bee populations as applied to European beekeeping. J. Apic. Res. 2011, 50, 51–84. [Google Scholar] [CrossRef]
- Gehring, W.J.; Wehner, R. Heat shock protein synthesis and thermotolerance in Cataglyphis, an ant from the Sahara desert. Proc. Natl. Acad. Sci. USA 1995, 92, 2994–2998. [Google Scholar] [CrossRef] [PubMed]
- Felipe, A.L.; Contrera, J.; Nieh, C. The effect of ambient temperature on forager sound production and thoracic temperature in the stingless bee, Melipona panamica. Behav. Ecol. Sociobiol. 2007, 61, 887–897. [Google Scholar]
- Kovac, H.; Stabentheiner, A. Thermoregulation of foraging honeybees on flowering plants: Seasonal variability and influence of radiative heat gain. Ecol. Entomol. 2011, 36, 686–699. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.S.; Moyle, L.C. Constitutive and Plastic Gene Expression Variation Associated with Desiccation Resistance Differences in the Drosophila americana Species Group. Genes 2020, 11, 146. [Google Scholar] [CrossRef] [PubMed]
- Maria, E. A Comparative Study of qPCR, Western Blot and Mass Spectrometry for the Estimation of Protein Concentrations; KTH Royal Institute of Technology School of Biotechnology: Stockholm, Sweden, 2016; p. 39. [Google Scholar]
Sampling Position | Altitude (m) | Annual Minimum Temperature (°C) | Annual Maximum Temperature (°C) | Annual Precipitation (mm) | Longitude (E) | Longitude (N) |
---|---|---|---|---|---|---|
Riyadh | 600 | 20 | 44 | 101 | 46.71 | 24.71 |
Baha | 2270 | 14 | 26 | 630 | 41.63 | 20.30 |
Locus/Gene Identifier | Cellular Location * | Gene/DNA Region | Primers |
---|---|---|---|
LOC724487 | Cytoplasm, Nucleus, cytosol | 28 KDa heat- and acid-stable phosphoprotein-like | F-GAGGAACCCAAAGCACATGGT R-TCTACACCCTTTGTTTTTCCCTGT |
LOC552531 | Mitochonderial Matrix | 10 KDa heat-shock protein, mitochondrial-like | F-AGCAATTGGACCTGGACAAAGA R-GCCAGTATATCTGACTCACGGAAT |
LOC410620 | Nucleus, cytoplasm, cytoskeleton | Heat-shock protein 70Ab | F-TGGCATTCCACCTGCACCTA R-TGGTGATCTTGTTCTCCTTTCCAGT |
LOC408706 | Cytoplasm, mitochondria, nucleus, endoplasmic reticulum | Heat-shock cognate 70Cb ortholog | F-CGCGCGTCTACACGTTCTTT R-CGTGATTTTGATGCCGCAGT |
LOC411700 | Cytoplasm | Heat-shock protein 83-like | F-TCCACATCTTCTGCTTTTGTTTCC R-TCAACGCGCGTCTTCATTCA |
LOC408928 | Nucleus, cytoplasm, cell membrane, melanosome | Heat-shock protein 90 | F-TGGATCCGTGAGAGATTCATAGCG R-CGCTTTCCAAGCTGAAATTGCACA |
NM_0011 85146.1 | Cytoplasm, nucleus, cytoskeleton | Apis mellifera actin (Arp1) | F-CGTAAAGATTTGTATGCCAACACTGTC R-AATCCATACGGAATATTTCCTCTCGG |
Variation Factor | Subspecies | Location | Sampling Time Point | Subspecies by Location | ||||
---|---|---|---|---|---|---|---|---|
Heat sock protein | F | P > F | F | P > F | F | P > F | F | P > F |
Hsp70ab | 89.59 | 0.0001 | 255.23 | 0.0001 | 63.02 | 0.0001 | 81.85 | 0.0001 |
Hsc70cb | 77.32 | 0.0001 | 919.83 | 0.0001 | 235.79 | 0.0001 | 142.59 | 0.0001 |
Hsp83 | 29.14 | 0.0001 | 277.15 | 0.0001 | 21.61 | 0.0001 | 13.06 | 0.0014 |
Hsp90 | 15.54 | 0.0006 | 740.73 | 0.0001 | 8.62 | 0.0015 | 6.58 | 0.0170 |
Hsp10 | 4.22 | 0.0520 | 60.100 | 0.0001 | 5.02 | 0.0150 | 3.37 | 0.0789 |
Hsp28 | 7.42 | 0.0119 | 325.52 | 0.0001 | 54.76 | 0.0001 | 2.63 | 0.1179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, A.A.; Alattal, Y.Z. Expression Levels of Heat-Shock Proteins in Apis mellifera jemenetica and Apis mellifera carnica Foragers in the Desert Climate of Saudi Arabia. Insects 2023, 14, 432. https://doi.org/10.3390/insects14050432
Alghamdi AA, Alattal YZ. Expression Levels of Heat-Shock Proteins in Apis mellifera jemenetica and Apis mellifera carnica Foragers in the Desert Climate of Saudi Arabia. Insects. 2023; 14(5):432. https://doi.org/10.3390/insects14050432
Chicago/Turabian StyleAlghamdi, Ahmad A., and Yehya Z. Alattal. 2023. "Expression Levels of Heat-Shock Proteins in Apis mellifera jemenetica and Apis mellifera carnica Foragers in the Desert Climate of Saudi Arabia" Insects 14, no. 5: 432. https://doi.org/10.3390/insects14050432
APA StyleAlghamdi, A. A., & Alattal, Y. Z. (2023). Expression Levels of Heat-Shock Proteins in Apis mellifera jemenetica and Apis mellifera carnica Foragers in the Desert Climate of Saudi Arabia. Insects, 14(5), 432. https://doi.org/10.3390/insects14050432