Assessment on Potential Suitable Habitats of the Grasshopper Oedaleus decorus asiaticus in North China based on MaxEnt Modeling and Remote Sensing Data
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Species
2.2. Habitat Factors
2.3. MaxEnt Modeling
2.4. MaxEnt Validation
2.5. Data Analysis
2.6. Classification of Suitable Areas
3. Results
3.1. Accuracy Test of MaxEnt Model
3.2. Potential Suitable Areas of O. d. asiaticus
3.3. Dominant Habitat Factors Affecting O. d. asiaticus Distribution
3.4. Threshold Values of Dominant Habitat Factors
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marion, L.G.; Rick, O.; Arianne, C. A global review on locusts (Orthoptera: Acrididae) and their interactions with livestock grazing practices. Front. Ecol. Evol. 2019, 7, 263. [Google Scholar]
- Du, G.; Zhao, H.; Tu, X. Division of the inhabitable areas for Oedaleus decorus asiaticus (Bey-Bienko) in Inner Mongolia. Plant Prot. 2018, 44, 24–31. [Google Scholar]
- Li, G.; Kong, D.; Li, F.; Liu, Q.; Wang, H. Reviews and prospects on studies of locust breeding area evolution and drainage network change in China during the historical period. Trop. Geogr. 2017, 37, 226–237. [Google Scholar]
- Shi, W.; Tan, S. Current status and trend on grasshopper and locust biological control. Chin. J. Biol. Control. 2019, 35, 307–324. [Google Scholar]
- Chen, J.; Wang, X. Progress in application of remote sensing and GIS to the study of locust habitats. Ecol. Environ. Sci. 2012, 21, 970–976. [Google Scholar]
- Wang, H.; Yu, F.; Hu, H.; Ji, R. Climatic changes in suitable distribution areas of Calliptamus italicus L. Chin. J. Agrometeorol. 2014, 35, 611–621. [Google Scholar]
- Waldner, F.; Ebbe, M.A.B.; Cressman, K.; Defourny, P. Operational monitoring of the desert locust habitat with earth observation: An assessment. ISPRS Int. J. Geo. Inf. 2015, 4, 2379–2400. [Google Scholar] [CrossRef] [Green Version]
- Xing, W.; Pang, B.; Hao, S. The combined effects of livestock grazing and seasonally increasing precipitation on the development and survival of Dasyhippus barbipes (Fischer-Waldheim) in Inner Mongolia. Chin. J. Appl. Entomol. 2017, 54, 978–989. [Google Scholar]
- Wang, B.; Edward, D.; Cathy, W.; Waters, C.; Spessa, A.; Lawton, D.; Feng, P.Y.; Liu, D.L. Future climate change likely to reduce the Australian Plague Locust (Chortoicetes Terminifera) seasonal outbreaks. Sci. Total Environ. 2019, 668, 947–957. [Google Scholar] [CrossRef]
- Propastin, P. Satellite-based monitoring system for assessment of vegetation vulnerability to locust hazard in the River Ili delta (Lake Balkhash, Kazakhstan). J. Appl. Remote Sens. 2013, 7, 075094. [Google Scholar] [CrossRef] [Green Version]
- Stige, L.C.; Chan, K.S.; Zhang, Z.; Frank, D.; Stenseth, N.C. Thousand-year-long Chinese time series reveals climatic forcing of decadal locust dynamics. Proc. Natl. Acad. Sci. USA 2007, 104, 16188–16193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, H.; Stige, L.C.; Cazelles, B.; Kausrud, K.L.; Svarverud, R.; Stenseth, N.C.; Zhang, Z. Reconstruction of a 1,910-y-long locust series reveals consistent associations with climate fluctuations in China. Proc. Natl. Acad. Sci. USA 2011, 108, 14521–14526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Sheng, S.; Wang, W. Study on effect of type of locust habitats on locust plague based on multi-temporal Landsat TM Data. J. Ecol. Rural. Environ. 2014, 30, 444–449. [Google Scholar]
- Clissold, F.J.; Simpson, S.J. Temperature, food quality and life history traits of herbivorous insects. Curr. Opin. Insect Sci. 2015, 11, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Deveson, E. Satellite normalized difference vegetation index data used in managing Australian plague locusts. J. Appl. Remote Sens. 2013, 7, 075096. [Google Scholar] [CrossRef] [Green Version]
- Renier, C.; Waldner, F.; Jacques, D.C.; Ebbe, M.A.B.; Cressman, K.; Defourny, P. A dynamic vegetation senescence indicator for near-real-time desert locust habitat monitoring with MODIS. Remote Sens. 2015, 7, 7545–7570. [Google Scholar] [CrossRef] [Green Version]
- Latchininsky, A.V. Locusts and remote sensing: A review. J. Appl. Remote Sens. 2013, 7, 075099. [Google Scholar] [CrossRef] [Green Version]
- Vallebona, C.; Crisci, A.; Vecchi, A.D.; Genesio, G.; Maracchi; Pasqui, M. West Africa Desert Locust Infestations: Connections with Regional Atmospheric Circulation Patterns. In Proceedings of the 20th Conference on Climate Variability and Change, New Orleans, LA, USA, 20–24 January 2008. [Google Scholar]
- Ni, S. Remote Sensing Monitoring and Prediction of Grasshoppers in the Area around Qinghai Lake; Shanghai Science and Technology Press: Shanghai, China, 2002. [Google Scholar]
- Nishide, Y.; Suzuki, T.; Tanaka, S. The hatching time of Locusta migratoria under outdoor conditions: Role of temperature and adaptive significance. Physiol. Entomol. 2017, 42, 146–155. [Google Scholar] [CrossRef]
- Bernays, E.A.; Gonzalez, N.; Angel, J.; Bright, K.L. Food mixing by generalist grasshoppers: Plant secondary compounds structure the pattern of feeding. J. Insect Behav. 1995, 8, 161–180. [Google Scholar] [CrossRef]
- Branson, D.H. Influence of a large late summer precipitation event on food limitation and grasshopper population dynamics in a northern great plains grassland. Environ. Entomol. 2008, 37, 686–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estes, L.D.; Bradley, B.A.; Beukes, H.; Hole, D.G.; Lau, M.; Oppenheimer, M.G.; Schulze, R.; Tadross, M.A.; Turner, W.R. Comparing mechanistic and empirical model projections of crop suitability and productivity: Implications for ecological forecasting. Global Ecol. Biogeogr. 2013, 22, 1007–1018. [Google Scholar] [CrossRef]
- Lozano, F.J.; Suarez-Seoane, S.; Kelly, M.; Luis, E. Multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: A case study in a mountainous Mediterranean region. Remote Sens. Environ. 2008, 112, 708–719. [Google Scholar] [CrossRef]
- Farashi, A.; Kaboli, M.; Karami, M. Predicting range expansion of invasive raccoons in northern Iran using ENFA model at two different scales. Ecol. Inform. 2013, 15, 96–102. [Google Scholar] [CrossRef]
- Le, Z.; Bai, Y.; Liu, L. The effect of temperature on hatching of Asiatic migratory locust in the grassland of north-east China. J. Meteorol. Environ. 2013, 29, 144–147. [Google Scholar]
- Adriaansen, C.; Woodman, J.D.; Deveson, E.; Drake, V. The Australian Plague Locust-Risk and Response. In Biological and Environmental Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2016; pp. 67–86. [Google Scholar]
- Crooks, W.T.S.; Cheke, R.A. Soil moisture assessments for brown locust Locustana pardalina breeding potential using synthetic aperture radar. J. Appl. Remote Sens. 2014, 8, 084898. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Rao, J.; Pan, Y. Progressive approach for risk prediction of rangeland locust hazard in Xinjiang based on remotely sensed data. Trans. Chin. Soc. Agric. Eng. 2015, 31, 202–208. [Google Scholar]
- Löw, F.; Waldner, F.; Latchininsky, A.; Biradar, C.; Bolkart, M.; Colditz, R.R. Timely monitoring of Asian Migratory locust habitats in the Amudarya delta, Uzbekistan using time series of satellite remote sensing vegetation index. J. Environ. Manage. 2016, 183, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Cissé, S.; Ghaout, S.; Babah, M.A.; Kamara, S.; Piou, C. Field verification of the prediction model on desert locust adult phase status from density and vegetation. J. Insect Sci. 2016, 16, 74. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Sun, Z.; Eerdeng, Q.; Ye, H.; Huang, W.; Nie, C.; Wang, K.; Zhou, Y. Using remote sensing data and species- environmental matching model to predict the potential distribution of grassland rodents in the northern China. Remote Sens. 2022, 14, 2168. [Google Scholar] [CrossRef]
- Manning, M. The treatment of uncertainties in the fourth IPCC assignment report. Adv. Clim. Chang. Res. 2006, 2, 13–21. [Google Scholar]
- Kumar, S.; Neven, L.G.; Zhu, H.; Zhang, R. Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt niche models. J. Econ. Entomol. 2015, 108, 1708–1719. [Google Scholar] [CrossRef] [PubMed]
- Zingore, K.M.; Sithole, G.; Abdel-Rahman, E.M.; Mohamed, S.A.; Ekesi, S.; Tanga, C.M.; Mahmoud, M.E.E. Global risk of invasion by Bactrocera zonata: Implications on horticultural crop production under changing climatic conditions. PLoS ONE 2020, 15, e243047. [Google Scholar] [CrossRef] [PubMed]
- Ning, S.; Wei, J.; Feng, J. Predicting the current potential and future world wide distribution of the onion maggot, Delia antiqua using maximum entropy ecological niche modeling. PLoS ONE 2017, 12, e171190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Dong, Y.; Huang, W.; Ren, B.; Deng, Q.; Shi, Y.; Bai, J.; Ren, Y.; Geng, Y.; Ma, H. Overwintering distribution of fall armyworm (Spodoptera frugiperda) in Yunnan, China, and influencing environmental factors. Insects 2020, 11, 805. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skillstatistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Frederico, R.G.; De Marco, P.J.; Zuanon, J. Evaluating the use of macroscale variables as proxies for local aquatic variables and to model stream fish distributions. Freshw. Biol. 2014, 59, 2303–2314. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Guo, A.; Wang, J.; Wang, C. Meteorological suitability index of grasshopper growth and development in Inner Mongolia. Meteorol. Sci. Technol. 2009, 37, 42–47. [Google Scholar]
- Bai, Y.; Liu, L.; Wu, L. The relationship between the occurrence of locusts and the characteristics of atmospheric circulation in Inner Mongolia. Chin. J. Ecol. 2007, 26, 1054–1057. [Google Scholar]
- Bai, Y.; Liu, L.; Gao, S. Study on Meteorological Monitoring and Forecasting of Grassland Locust and Countermeasures; China Meteorological Press: Beijing, China, 2013. [Google Scholar]
- Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model 2011, 222, 1343–1346. [Google Scholar] [CrossRef]
Category | Variables | Abbreviation | Resolution | Units | Data Source |
---|---|---|---|---|---|
Soil | Soil type | ST | 1:1 million | China soil map | |
Topography | Elevation | Elevation | 30 m | m | ASTER GDEM V3 |
Vegetation | Vegetation type | VT | 1:1 million | China vegetation map | |
Normalized difference vegetation index | NDVI | 1000 m | MOD13A2 V6 product | ||
Meteorology | Land surface temperature | LST | 1000 m | °C | MOD11A2 V6 product |
Precipitation | P | 0.05 degrees | mm/day | Climate Hazards Group InfraRed Precipitation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Ye, H.; Huang, W.; Qimuge, E.; Bai, H.; Nie, C.; Lu, L.; Qian, B.; Wu, B. Assessment on Potential Suitable Habitats of the Grasshopper Oedaleus decorus asiaticus in North China based on MaxEnt Modeling and Remote Sensing Data. Insects 2023, 14, 138. https://doi.org/10.3390/insects14020138
Sun Z, Ye H, Huang W, Qimuge E, Bai H, Nie C, Lu L, Qian B, Wu B. Assessment on Potential Suitable Habitats of the Grasshopper Oedaleus decorus asiaticus in North China based on MaxEnt Modeling and Remote Sensing Data. Insects. 2023; 14(2):138. https://doi.org/10.3390/insects14020138
Chicago/Turabian StyleSun, Zhongxiang, Huichun Ye, Wenjiang Huang, Erden Qimuge, Huiqing Bai, Chaojia Nie, Longhui Lu, Binxiang Qian, and Bo Wu. 2023. "Assessment on Potential Suitable Habitats of the Grasshopper Oedaleus decorus asiaticus in North China based on MaxEnt Modeling and Remote Sensing Data" Insects 14, no. 2: 138. https://doi.org/10.3390/insects14020138
APA StyleSun, Z., Ye, H., Huang, W., Qimuge, E., Bai, H., Nie, C., Lu, L., Qian, B., & Wu, B. (2023). Assessment on Potential Suitable Habitats of the Grasshopper Oedaleus decorus asiaticus in North China based on MaxEnt Modeling and Remote Sensing Data. Insects, 14(2), 138. https://doi.org/10.3390/insects14020138