Population Monitoring, Egg Parasitoids, and Genetic Structure of the Invasive Litchi Stink Bug, Tessaratoma papillosa in Taiwan
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Monitoring of LSB Populations
2.2. Survey for Egg Parasitoids
2.3. Genetic Structure of LSB Based on Mitochondrial DNA
2.3.1. Specimen Collection and DNA Extraction
2.3.2. PCR Amplification and DNA Sequencing
2.3.3. Sequence Analyses and Phylogenetic Reconstruction
3. Results
3.1. Population Dynamics of LSB
3.2. Diversity and Abundance of Egg Parasitoids
3.3. Genetic Structure of LSB Based on Mitochondrial DNA
4. Discussion
4.1. Population Dynamics of LSB
4.2. Egg Parasitoids as Biocontrol Agents of LSB in Taiwan
4.3. Invasion History of LSB in Taiwan and its Biocontrol Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boopathi, T.; Pathak, K.A.; Ramakrishna, Y.; Verma, A.K. Effect of weather factors on the population dynamics of litchi stink bug, Tessaritoma papillosa (Drury). Pest Manage. Horticul. Ecosys. 2011, 17, 69–74. [Google Scholar]
- Li, D.S.; Liao, C.Y.; Zhang, B.X.; Song, Z.W. Biological control of insect pests in litchi orchards in China. Biol. Control 2014, 68, 23–36. [Google Scholar] [CrossRef]
- Tran, H.; Van, H.N.; Muniappan, R.; Amrine, J.; Naidu, R.; Gilbertson, R.; Sidhu, J. Integrated pest management of longan (Sapindales: Sapindaceae) in Vietnam. J. Integr. Pest. Manag. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Chang, T.Y.; Chen, W.H. Pest management strategy in eco-friendly farming system application of Anastatus japonicas to biological control litchi stink bug. In Proceedings of the Symposium on Organic and Eco-Friendly Farming; Shen, Y.M., Pai, K.F., Lin, H.S., Eds.; Taichung District Agricultural Research and Extension Station, COA: Changhya, Taiwan, 2018; pp. 125–139. [Google Scholar]
- Wu, Y.H.; Tzeng, H.Y.; Yang, C.C.S. Ants as egg predators of the invasive litchi stink bug (Tessaratoma papillosa; Hemiptera: Tessaratomidae): Identification and predation efficiency. Formos. Entomol. 2018, 38, 97–102. [Google Scholar]
- Liu, Y.F.; Gu, D.X. An investigation on feeding behavior of the litchi stink bug: Tessaratoma papillosa (Hemiptera: Pentatomidae). Acta Entomol. Sin. 2000, 43, 152–158. [Google Scholar]
- Xian, J.D.; Uang, G.W.; Chem, J.J.; Huang, X. Control efficacy of Anastatus japonicus on the natural population of Tessratoma papillosa. J. South China Agric. Univ. 2008, 29, 47–50. [Google Scholar]
- Zhang, Z.M.; Wu, W.W.; Li, G.K. Study of the alarming volatile characteristics of Tessaratoma papillosa using SPME-GC-MS. J. Chromatogr. Sci. 2009, 47, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Li, R.X.; Zhao, D.X.; Wang, Y.J.; Gao, J.L. Research progress of controlling Tessaritoma papillosa (Drury). Chin. J. Trop. Crop. 2013, 1, 195–200. [Google Scholar]
- Nielsen, A.L.; Hamilton, G.C. Seasonal occurrence and impact of Halyomorpha halys (Stål) (Heteroptera: Pentatomidae): A polyphagous plant pest from Asia newly detected in north America. J. Econ. Entomol. 2009, 102, 1133–1140. [Google Scholar] [CrossRef]
- Xu, Y.C. Control effect of Beauveria bassiana Bbt1 strain and some other chemical. pesticides on Tessaratoma papillosa Drury. Entomol. J. East China 2005, 14, 169–172. [Google Scholar]
- Chen, Y.C.; Huang, T.M.; Chang, C.C. Study on the control of litchi stink bugs (Tessaratoma papillosa) by pesticides. Res. Bull. Tainan Dist. Agric. Res. Ext. Stn. 2019, 74, 72–82. [Google Scholar]
- Zeng, X.N.; Deng, D.; Wang, J.M. Chlorpyrifos and cypermethrin for the control of litchi stink bug (Tessaratoma papillosa). Acta Hort. 2001, 558, 421–423. [Google Scholar] [CrossRef]
- Zou, H.J. The effect of releasing Anastatus sp. to control Tessaratoma papillosa in the field. Chin. J. Plant Prot. 2008, 28, 26–27. [Google Scholar]
- Goolsby, J.A.; DeBarro, P.J.; Makinson, J.R.; Pemberton, R.W.; Hartley, D.M.; Frohlich, D.R. Matching the origin of an invasive weed for selection of a herbivore haplotype for a biological control programme. Mol. Ecol. 2006, 15, 287–297. [Google Scholar] [CrossRef]
- Caldera, E.J.; Ross, K.G.; DeHeer, C.J.; Shoemaker, D.D. Putative native source of the invasive fire ant Solenopsis invicta in the USA. Biol. Invasions 2008, 10, 1457–1479. [Google Scholar] [CrossRef]
- Valentin, R.E.; Nielsen, A.L.; Wiman, N.G.; Lee, D.H.; Fonseca, D.M. Global invasion network of the brown marmorated stink bug, Halyomorpha halys. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ascunce, M.S.; Yang, C.C.; Oakey, J.; Calcaterra, L.; Wu, W.J.; Shih, C.J.; Goudet, J.; Ross, K.G.; Shoemaker, D.D. Global invasion history of the fire ant Solenopsis invicta. Science 2011, 331, 1066–1068. [Google Scholar] [CrossRef]
- Peng, L.F.; Tang, L.; Gibson, G.A.P. Redescription of the types of species of Anastatus Motschulsky, 1859 (Hymenoptera: Chalcidoidea: Eupelmidae) described by J. K. Sheng and coauthors. Eur. J. Taxon. 2017, 292, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Moraglio, S.T.; Tortorici, F.; Pansa, M.G.; Castelli, G.; Pontini, M.; Scovero, S.; Visentin, S.; Tavella, L. A 3-year survey on parasitism of Halyomorpha halys by egg parasitoids in northern Italy. J. Pest Sci. 2019, 93, 183–194. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Hoen, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metozoan invertebrates. Mol. Mar. Biotechnolog. 1994, 3, 294–299. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, X. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Mol. Biol. Evol. 2018, 35, 1550–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.C. A preliminary study of the biology of litchi stink bug, Tessaratoma papillosa Drury, and its control. Acta Phytophylacica Sin. Peking 1965, 4, 329–340. [Google Scholar]
- Pham, M.Q.J. Estimation of a longan stink bug, Tessaratoma papillosa in Son La Province, Vietnam. J. Vietnam. Environ. 2016, 8, 129–134. [Google Scholar] [CrossRef]
- Harvey, J.A.; Poelman, E.H.; Tanaka, T. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 2013, 58, 333–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cusumano, A.; Peri, E.; Amodeo, V.; McNeil, J.N.; Colazza, S. Interspecific competition/facilitation among insect parasitoids. Curr. Opin. Insect Sci. 2016, 14, 12–16. [Google Scholar] [CrossRef]
- Wang, X.G.; Keller, M.A. A comparison of the host-searching efficiency of two larval parasitoids of Plutella xylostella. Ecol. Entomol. 2002, 27, 105–114. [Google Scholar] [CrossRef]
- Valente, C.; Afonso, C.; Gonçalves, C.I.; Branco, M. Assessing the competitive interactions between two egg parasitoids of the Eucalyptus snout beetle, Gonipterus platensis, and their implications for biological control. Biol. Control 2019, 130, 80–87. [Google Scholar] [CrossRef]
- Stahl, J.M.; Babendreier, D.; Foti, M.C.; Colazza, S.; HayeIntrinsic, T. Intrinsic competition between two European egg parasitoids of the brown marmorated stink bug. J. Appl. Entomol. 2020, 144, 669–677. [Google Scholar] [CrossRef]
- Laine, A.L. Spatial scale of local adaptation in a plant-pathogen metapopulation. J. Evol. Biol. 2005, 18, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Li, N.C. Survey, control and public education of the litchi stink bug in Kinmen County. Bull. Miaoli Dist. Agric. Res. Ext. Stn. 2019, 222, 4. [Google Scholar]
- Chen, Y.C. Impacts and pest management of the litchi stink bug. Bull. Tainan Dist. Agric. Res. Ext. Stn. 2019, 103, 1–6. [Google Scholar]
- Bertelsmeier, C.; Ollier, S.; Liebhold, A.M.; Brockerhoff, E.G.; Ward, D.; Keller, L. Recurrent bridgehead effects accelerate global alien ant spread. Proc. Natl. Acad. Sci. USA 2018, 115, 5486–5491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.C.; Weng, Y.M.; Lai, L.C.; Suarez, A.V.; Wu, W.J.; Lin, C.C.; Yang, C.C.S. Analysis of recent interception records reveals frequent transport of arboreal ants and potential predictors for ant invasion in Taiwan. Insects 2020, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Macel, M.; Tielboörger, K.; Verhoeven, K.J. Effects of admixture in native and invasive populations of Lythrum salicaria. Biol. Invasions 2018, 20, 2381–2393. [Google Scholar] [CrossRef] [Green Version]
- Correâa, A.S.; Cordeiro, E.M.; Omoto, C. Agricultural insect hybridization and implications for pest management. Pest Manag. Sci. 2019, 75, 2857–2864. [Google Scholar] [CrossRef]
- Briano, J.; Calcaterra, L.; Varone, L. Fire ants (Solenopsis spp.) and their natural enemies in southern South America. Psyche 2012, 2012, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, S.A.; Boynton, P.J. Evidence for microbial local adaptation in nature. Mol. Ecol. 2017, 26, 1860–1876. [Google Scholar] [CrossRef]
2018 | 2019 | ||||||
---|---|---|---|---|---|---|---|
April | May | June | March | April | May | ||
Northern | |||||||
No. of eggs | 230 | 753 | 634 | 204 | 1752 | 1061 | |
A.f. | 17.4 | 5.3 | 0.2 | 0.0 | 0.0 | 3.7 | |
A.d. | 5.7 | 35.1 | 58.2 | 0.0 | 0.0 | 2.6 | |
h | 52.6 | 12.6 | 2.2 | 71.1 | 89.6 | 83.4 | |
u | 24.3 | 47.0 | 39.4 | 28.9 | 7.5 | 10.3 | |
Central | |||||||
- | 756 | 14 | 146 | 877 | 908 | ||
A.f. | - | 3.0 | 0.0 | 0.0 | 5.7 | 2.9 | |
A.d. | - | 48.4 | 100.0 | 8.2 | 29.4 | 23.1 | |
h | - | 1.7 | 0.0 | 89.0 | 49.8 | 62.1 | |
u | - | 46.9 | 0.0 | 2.8 | 15.1 | 11.9 | |
Southern | |||||||
No. of eggs | 400 | 140 | 14 | 1592 | 739 | 426 | |
A.f. | 0.0 | 20.0 | 0.0 | 1.9 | 7.4 | 3.5 | |
A.d. | 11.8 | 44.3 | 71.4 | 1.8 | 24.2 | 27.7 | |
h | 67.0 | 2.1 | 0.0 | 75.6 | 38.7 | 8.2 | |
u | 21.3 | 33.6 | 28.6 | 20.7 | 29.7 | 60.6 | |
Kinmen | |||||||
No. of eggs | 29 | - | - | - | 27 | - | |
A.f. | 100.0 | - | - | - | 96.4 | - | |
A.d. | 0.0 | - | - | - | 0.0 | - | |
h | 0.0 | - | - | - | 0.0 | - | |
u | 0.0 | - | - | - | 4.0 | - |
2018 | 2019 | |||||
---|---|---|---|---|---|---|
April | May | June | March | April | May | |
Northern | ||||||
Discovery efficiency | ||||||
A.f. | 29.4 ± 11.4 | 16.4 ± 5.0 | 2.1 ± 2.1 | 0 | 0 | 7.0 ± 2.8 |
A.d. | 17.6 ± 9.5 | 56.4 ± 6.7 | 83.3 ± 5.4 | 0 | 0 | 8.1 ± 2.7 |
Exploitation efficiency | ||||||
A.f. | 57.4 ± 13.0 | 43.9 ± 8.6 | 7.1 ± 0.0 | 0 | 0 | 47.9 ± 13.0 |
A.d. | 38.4 ± 16.5 | 62.6 ± 5.7 | 76.1 ± 4.5 | 0 | 0 | 24.1 ± 11.2 |
Central | ||||||
Discovery efficiency | ||||||
A.f. | - | 10.7 ± 4.2 | 0 | 0 | 9.0 ± 3.5 | 6.8 ± 3.0 |
A.d. | - | 80.4 ± 5.4 | 100.0 ± 0.0 | 9.1 ± 9.1 | 41.8 ± 6.1 | 28.8 ± 5.3 |
Exploitation efficiency | ||||||
A.f. | - | 23.0 ± 12.4 | 0 | 0 | 51.8 ± 12.2 | 54.8 ± 18.6 |
A.d. | - | 59.2 ± 4.9 | 100 | 85.7 ± 0.0 | 69.5 ± 6.4 | 75.5 ± 6.4 |
Southern | ||||||
Discovery efficiency | ||||||
A.f. | 0 | 27.3 ± 14.1 | 0 | 1.7 ± 1.2 | 17.2 ± 5.0 | 7.7 ± 4.3 |
A.d. | 21.9 ± 7.4 | 81.8 ± 12.2 | 100 | 4.2 ± 1.8 | 48.3 ± 6.6 | 43.6 ± 8.0 |
Exploitation efficiency | ||||||
A.f. | 0 | 41.9 ± 22.7 | 0 | 54.6 ± 22.6 | 38.1 ± 9.3 | 43.0 ± 28.8 |
A.d. | 63.8 ± 10.9 | 64.4 ± 12.7 | 71.4 ± 0.0 | 41.5 ± 11.2 | 53.5 ± 5.6 | 58.7 ± 8.3 |
Kinmen (only A.f. was found) | ||||||
Discovery efficiency | 100 | - | - | - | 100 | - |
Exploitation efficiency | 100 | - | - | - | 96.4 ± 0.0 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.-H.; Kamiyama, M.T.; Chung, C.-C.; Tzeng, H.-Y.; Hsieh, C.-H.; Yang, C.-C.S. Population Monitoring, Egg Parasitoids, and Genetic Structure of the Invasive Litchi Stink Bug, Tessaratoma papillosa in Taiwan. Insects 2020, 11, 690. https://doi.org/10.3390/insects11100690
Wu Y-H, Kamiyama MT, Chung C-C, Tzeng H-Y, Hsieh C-H, Yang C-CS. Population Monitoring, Egg Parasitoids, and Genetic Structure of the Invasive Litchi Stink Bug, Tessaratoma papillosa in Taiwan. Insects. 2020; 11(10):690. https://doi.org/10.3390/insects11100690
Chicago/Turabian StyleWu, Yi-Hui, Matthew T. Kamiyama, Chuan-Cheng Chung, Hsy-Yu Tzeng, Chia-Hung Hsieh, and Chin-Cheng Scotty Yang. 2020. "Population Monitoring, Egg Parasitoids, and Genetic Structure of the Invasive Litchi Stink Bug, Tessaratoma papillosa in Taiwan" Insects 11, no. 10: 690. https://doi.org/10.3390/insects11100690