Wolbachia-Mitochondrial DNA Associations in Transitional Populations of Rhagoletis cerasi
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weinert, L.A.; Araujo-Jnr, E.V.; Ahmed, M.Z.; Welch, J.J. The incidence of bacterial endosymbionts in terrestrial arthropods. Proc. R. Soc. B Biol. Sci. 2015, 282, 20150249. [Google Scholar] [CrossRef] [PubMed]
- Werren, J.H.; Windsor, D.M. Wolbachia infection frequencies in insects: Evidence of a global equilibrium? Proc. R. Soc. B Biol. Sci. 2000, 267, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008, 6, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Nikolouli, K.; Colinet, H.; Renault, D.; Enriquez, T.; Mouton, L.; Gibert, P.; Sassu, F.; Cáceres, C.; Stauffer, C.; Pereira, R.; et al. Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. J. Pest Sci. 2018, 91, 489–503. [Google Scholar] [CrossRef]
- Bishop, C.; Parry, R.; Asgari, S. Effect of Wolbachia wAlbB on a positive-sense RNA negev-like virus: A novel virus persistently infecting Aedes albopictus mosquitoes and cells. J. Gen. Virol. 2020, 101, 216–225. [Google Scholar] [CrossRef]
- Iturbe-Ormaetxe, I.; Walker, T.; O’Neill, S.L. Wolbachia and the biological control of mosquito-borne disease. EMBO Rep. 2011, 12, 508–518. [Google Scholar] [CrossRef]
- Schmidt, T.L.; Barton, N.H.; Rasic, G.; Turley, A.P.; Montgomery, B.L.; Iturbe-Ormaetxe, I.; Cook, P.E.; Ryan, P.A.; Ritchie, S.A.; Hoffmann, A.A.; et al. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biol. 2017, 15, e2001894. [Google Scholar] [CrossRef]
- Walker, T.; Moreira, L.A. Can Wolbachia be used to control Malaria? Memorias do Instituto Oswaldo Cruz 2011, 106, 212–217. [Google Scholar] [CrossRef]
- Zabalou, S.; Riegler, M.; Theodarakopoulou, M.; Stauffer, C.; Savakis, C.; Bourtzis, K. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc. Natl. Acad. Sci. USA 2004, 101, 15042–15045. [Google Scholar] [CrossRef]
- Schofield, P. Spatially explicit models of Turelli-Hoffmann Wolbachia invasive wave fronts. J. Theor. Biol. 2002, 215, 121–131. [Google Scholar] [CrossRef]
- Dorigatti, I.; McCormack, C.; Nedjati-Gilani, G.; Ferguson, N.M. Using Wolbachia for dengue control: Insights from modelling. Trends Parasitol. 2018, 34, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Turelli, M.; Hoffmann, A.A.; McKechnie, S.W. Dynamics of cytoplasmic incompatibility and mtDNA variation in natural Drosophila simulans populations. Genetics 1992, 132, 713–723. [Google Scholar]
- Hurst, G.D.D.; Jiggins, F.M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. Proc. R. Soc. B Biol. Sci. 2005, 272, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Kodandaramaiah, U.; Simonsen, T.J.; Bromilow, S.; Wahlberg, N.; Sperling, F. Deceptive single-locus taxonomy and phylogeography: Wolbachia-associated divergence in mitochondrial DNA is not reflected in morphology and nuclear markers in a butterfly species. Ecol. Evol. 2013, 3, 5167–5176. [Google Scholar] [CrossRef] [PubMed]
- Graham, R.I.; Wilson, K. Male-killing Wolbachia and mitochondrial selective sweep in a migratory African insect. BMC Evol. Biol. 2012, 12, 204. [Google Scholar] [CrossRef] [PubMed]
- Delgado, A.M.; Cook, J.M. Effects of a sex ratio-distorting endosymbiont on mtDNA variation in a global insect pest. BMC Evol. Biol. 2009, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Roehrdanz, R.L.; Levine, E. Wolbachia bacterial infections linked to mitochondrial DNA reproductive isolation among populations of northern corn rootworm (Coleoptera:Chrysomelidae). Ann. Entomol. Soc. Am. 2007, 100, 522–531. [Google Scholar] [CrossRef]
- Schuler, H.; Köppler, K.; Daxböck-Horvath, S.; Rasool, B.; Krumböck, S.; Schwarz, D.; Hoffmeister, T.S.; Schlick-Steiner, B.C.; Steiner, F.M.; Telschow, A.; et al. The hitchhiker’s guide to Europe: The infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi. Mol. Ecol. 2016, 25, 1595–1609. [Google Scholar] [CrossRef]
- Jaenike, J.; Stahlhut, J.K.; Boelio, L.M.; Unckless, R.L. Association between Wolbachia and Spiroplasma within Drosophila neotestacea: An emerging symbiotic mutualism? Mol. Ecol. 2010, 19, 414–425. [Google Scholar] [CrossRef]
- Karimi, J.; Darsouei, R. Presence of the endosymbiont Wolbachia among some fruit flies (Diptera: Tephritidae) from Iran: A multilocus sequence typing approach. J. Asia Pac. Entomol. 2014, 17, 105–112. [Google Scholar] [CrossRef]
- Mateos, M.; Martinez Montoya, H.; Lanzavecchia, S.B.; Conte, C.; Guillén, K.; Morán-Aceves, B.M.; Toledo, J.; Liedo, P.; Asimakis, E.D.; Doudoumis, V.; et al. Wolbachia pipientis associated with tephritid fruit fly pests: From basic research to applications. Front. Microbiol. 2020, 11, 1080. [Google Scholar] [CrossRef] [PubMed]
- Baldo, L.; Ayoub, N.A.; Hayashi, C.Y.; Russel, J.A.; Stahlhut, J.K.; Werren, J.H. Insight into the routes of Wolbachia invasion: High levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity. Mol. Ecol. 2008, 17, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Yeap, H.L.; Rašić, G.; Endersby-Harshman, N.M.; Lee, S.F.; Arguni, E.; Le Nguyen, H.; Hoffmann, A.A. Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations. Heredity 2016, 116, 265–276. [Google Scholar] [CrossRef]
- Turelli, M.; Hoffmann, A.A. Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 1991, 353, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Kriesner, P.; Hoffmann, A.A.; Lee, S.F.; Turelli, M.; Weeks, A.R. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog. 2013, 9, e1003607. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.H.; Kim, P.S. Modelling a Wolbachia invasion using a slow-fast dispersal reaction-diffusion approach. Bull. Math. Biol. 2013, 75, 1501–1523. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Tang, M.; Yu, J. Wolbachia infection dynamics by reaction-diffusion equations. Sci. China Math. 2015, 58, 77–96. [Google Scholar] [CrossRef]
- Fimiani, P. Mediterranean region. In Fruit Flies: Their Biology, Natural Enemies and Control; Robinson, A.S., Hopper, G., Eds.; Elsevier: Amsterdam, The Netherlands, 1989; pp. 39–50. [Google Scholar]
- Bakovic, V.; Schuler, H.; Schebeck, M.; Feder, J.L.; Stauffer, C.; Ragland, G.J. Host plant-related genomic differentiation in the European cherry fruit fly, Rhagoletis cerasi. Mol. Ecol. 2019, 28, 4648–4666. [Google Scholar] [CrossRef]
- Riegler, M.; Stauffer, C. Wolbachia infections and superinfections in cytoplasmically incompatible populations of the European cherry fruit fly Rhagoletis cerasi (Diptera, Tephritidae). Mol. Ecol. 2002, 11, 2425–2434. [Google Scholar] [CrossRef]
- Arthofer, W.; Riegler, M.; Schneider, D.; Krammer, M.; Miller, W.J.; Stauffer, C. Hidden Wolbachia diversity in field populations of the European cherry fruit fly, Rhagoletis cerasi (Diptera, Tephritidae). Mol. Ecol. 2009, 18, 3816–3830. [Google Scholar] [CrossRef]
- Augustinos, A.A.; Asimakopoulou, A.K.; Moraiti, C.A.; Mavragani-Tsipidou, P.; Papadopoulos, N.T.; Bourtzis, K. Microsatellite and Wolbachia analysis in Rhagoletis cerasi natural populations: Population structuring and multiple infections. Ecol. Evol. 2014, 4, 1943–1962. [Google Scholar] [CrossRef] [PubMed]
- Bakovic, V.; Schebeck, M.; Telschow, A.; Stauffer, C.; Schuler, H. Spatial spread of Wolbachia in Rhagoletis cerasi populations. Biol. Lett. 2018, 14, e20180161. [Google Scholar] [CrossRef] [PubMed]
- Boller, E.F.; Russ, K.; Vallo, V.; Bush, G.L. Incompatible races of European cherry fruit fly, Rhagoletis cerasi (Diptera:Tephritidae), their origin and potential use in biological control. Entomol. Exp. App. 1976, 20, 237–247. [Google Scholar] [CrossRef]
- Riegler, M.; Charlat, S.; Stauffer, C.; Mercot, H. Wolbachia transfer from a true fly into the real fruit fly: Investigating the outcomes of host/symbiont co-evolution. App. Environ. Microbiol. 2004, 70, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Schebeck, M.; Feldkirchner, L.; Stauffer, C.; Schuler, H. Dynamics of an ongoing Wolbachia spread in the European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae). Insects 2019, 10, 172. [Google Scholar] [CrossRef]
- Simon, C.; Frati, F.; Beckenbach, A.; Crespi, B.; Liu, H.; Flook, P. Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Ann. Entomol. Soc. Am. 1994, 87, 651–701. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Carrington, L.B.; Lipkowitz, J.R.; Hoffmann, A.A.; Turelli, M. A re-examination of Wolbachia-induced cytoplasmic incompatibility in California Drosophila simulans. PLoS ONE 2011, 6, e22565. [Google Scholar] [CrossRef]
- Schuler, H.; Bertheau, C.; Egan, S.P.; Feder, J.L.; Riegler, M.; Schlick-Steiner, B.C.; Steiner, F.M.; Johannesen, J.; Kern, P.; Tuba, K.; et al. Evidence for a recent horizontal transmission and spatial spread of Wolbachia from endemic Rhagoletis cerasi (Diptera: Tephritidae) to invasive Rhagoletis cingulata in Europe. Mol. Ecol. 2013, 22, 4101–4111. [Google Scholar] [CrossRef]
- Schuler, H.; Kern, P.; Arthofer, W.; Vogt, H.; Fischer, M.; Stauffer, C.; Riegler, M. Wolbachia in parasitoids attacking native european and introduced eastern cherry fruit flies in Europe. Environ. Enthomol. 2016, 45, 1424–1431. [Google Scholar] [CrossRef]
- Ahmed, M.Z.; Li, S.J.; Xue, X.; Yin, X.J.; Ren, S.X.; Jiggins, F.M.; Greeff, J.M.; Qiu, B.L. The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog. 2015, 11, e1004672. [Google Scholar] [CrossRef] [PubMed]
- Lathrop, F.H.; Newton, R.C. The biology of Opius melleus Gahan, a parasite of the Blueberry Maggot. J. Agric. Res. 1933, 46, 143–160. [Google Scholar]
- Feder, J.F. The effect of parasitoids on sympatric host races of Rhagoletis pomonella (Diptera: Tephritidae). Ecology 1995, 76, 801–813. [Google Scholar] [CrossRef]
- Meijer, K.; Smit, C.; Schilthuizen, M.; Beukeboom, L.W. Fitness benefits of the fruit fly Rhagoletis alternata on a non-native rose host. Oecologia 2016, 181, 185–192. [Google Scholar] [CrossRef]
- Park, S.T.; Kim, J. Trends in next-generation sequencing and a new era for whole genome sequencing. Int. Neurourol. J. 2016, 20, S76. [Google Scholar] [CrossRef]
- Morrow, J.L.; Schneider, D.I.; Klasson, L.; Janitz, C.; Miller, W.J.; Riegler, M. Parallel sequencing of Wolbachia wCer2 from donor and novel hosts reveals multiple incompatibility factors and genome stability after host transfers. Gen. Biol. Evol. 2020, 12, 720–735. [Google Scholar] [CrossRef]
- Shropshire, J.D.; Bordenstein, S.R. Two-By-One model of cytoplasmic incompatibility: Synthetic recapitulation by transgenic expression of cifA and cifB in Drosophila. PLoS Genet. 2019, 15, e1008221. [Google Scholar] [CrossRef]
- Ellegaard, K.M.; Klasson, L.; Näslund, K.; Bourtzis, K.; Andersson, S.G. Comparative genomics of Wolbachia and the bacterial species concept. PLoS Genet. 2013, 9, e1003381. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakovic, V.; Schebeck, M.; Stauffer, C.; Schuler, H. Wolbachia-Mitochondrial DNA Associations in Transitional Populations of Rhagoletis cerasi. Insects 2020, 11, 675. https://doi.org/10.3390/insects11100675
Bakovic V, Schebeck M, Stauffer C, Schuler H. Wolbachia-Mitochondrial DNA Associations in Transitional Populations of Rhagoletis cerasi. Insects. 2020; 11(10):675. https://doi.org/10.3390/insects11100675
Chicago/Turabian StyleBakovic, Vid, Martin Schebeck, Christian Stauffer, and Hannes Schuler. 2020. "Wolbachia-Mitochondrial DNA Associations in Transitional Populations of Rhagoletis cerasi" Insects 11, no. 10: 675. https://doi.org/10.3390/insects11100675
APA StyleBakovic, V., Schebeck, M., Stauffer, C., & Schuler, H. (2020). Wolbachia-Mitochondrial DNA Associations in Transitional Populations of Rhagoletis cerasi. Insects, 11(10), 675. https://doi.org/10.3390/insects11100675