Influence of Thermal, Oxidative, Catalytic, and Mechanical Effects on Thickener Degradation and the Associated Lubricating Performance of Greases
Abstract
1. Introduction
2. State of Research
3. Materials and Methods
3.1. Model Greases
3.2. Thermal, Oxidative, and Catalytic Stress
3.2.1. Isothermal Aging on Catalyst Plates
3.2.2. Aging in the RapidOxy Test Device
3.3. Scanning Electron Microscopy (SEM) Investigations
3.4. Mechanical Stress
3.5. Application-Oriented Loading by Rolling Bearing Testing (FE9)
4. Results
4.1. Rolling Bearing Testing (FE9)
4.2. Chemical Characterization
4.2.1. RapidOxy According to DIN 51830—Part 2
4.2.2. FTIR Measurements of Fresh Greases
4.2.3. FTIR Measurements After RapidOxy Testing (DIN 51830-1)
4.3. Structural Characterization
4.3.1. Scanning Electron Microscopy (SEM)
4.3.2. AFM Measurements
4.3.3. Rheological Structural Characterization
5. Discussion
5.1. Statistical Analysis for Finding Correlations (Design-of-Experiments—DOE)
5.2. Chemical Interpretation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AFM | Atomic Force Microscopy |
| AO | Antioxidant |
| DGMK | German Scientific Society for Sustainable Energy Sources, Mobility, and Carbon Cycles e.V. in German: “Deutsche Wissenschaftliche Gesellschaft für nachhaltige Energieträger, Mobilität und Kohlenstoffkreisläufe e.V.”, Hamburg, Germany, |
| DOE | Design of Experiments |
| FE9 | Roller Bearing Test Rig “FE9” acc. DIN 51821 |
| FTIR | Fourier Transformed Infrared Spectroscopy |
| GfT | German Scientific Society for Tribology, in German: Gesellschaft für Tribologie, Jülich |
| KTM | Mannheim Competence Center for Tribology at Mannheim Technical University of Applied Sciences; in German: Kompetenzzentrum Tribologie Mannheim |
| MPWP | Multi station roller bearing test right (in German: “MehrPlatzWälzlagerPrüfstand”) |
| NLGI | National Lubricating Grease Institute |
| OIT | Oxidation Induction Time |
| OWI | OWI Science for Fuels gGmbH—non-profit research institute affiliated with RWTH Aachen University |
| PAO | Poly-Alpha-Olefine |
| SEM | Scanning Electron Microscope |
| TGA | Thermogravimetric Analysis |
| RWTH | in German: Rheinisch-Westfälische Technische Hochschule (Aachen University) |
| XRF | X-Ray Fluorescence Measurement |
| ZnDTP | Zinc dialkyldithiophosphate |
References
- Beck, J. In Zeiten von Industrie 4.0 erst recht: Gute Schmierung will gelernt sein. Tribol. Schmier. 2019, 66, 33–36. [Google Scholar]
- HCP-Sense. Bearing Damage: Identify Causes Early & Avoid Bearing Failure. Available online: https://www.hcp-sense.com/en/tech-corner/bearing-damage-identify-causes-early-avoid-bearing-failure/ (accessed on 26 November 2025).
- Kleinlein, E. (Ed.) Einsatz von Wälzlagern bei Extremen Betriebs- und Umgebungsbedingungen: Optimierung Durch Geeignete Konstruktion und Entwicklung von Wälzlagern, Schmierung und Abdichtung; Expert-Verlag: Renningen–Malmsheim, Germany, 1998; Volume 574. [Google Scholar]
- DIN ISO 281; Wälzlager—Dynamische Tragzahlen und Nominelle Lebensdauer. DIN-Media: Berlin, Germany, 2010.
- Matzke, M.; Dornhöfer, G.; Schöfer, J. Quantitatively-Accelerated Testing of Grease Oxidation—A Parameter Study with the RapidOxy. In Proceedings of the Annual Meeting of the Gesellschaft für Tribologie (GfT), Göttingen, Germany, 23–25 September 2019; Gesellschaft für Tribologie: Jülich, Germany, 2019; p. 428, ISBN 978-3-9817451-4-6. [Google Scholar]
- Schneider, V.; Krewer, M.; Poll, G. Effects of parasitic currents and electrical discharges on rolling bearings and their service life in electrified environment. Lubricants 2024, 12, 230. [Google Scholar] [CrossRef]
- Grebe, M.; Ruland, M. Influence of Mechanical, Thermal, Oxidative, and Catalytic Processes on Thickener Structure and Thus on the Service Life of Rolling Bearings. Lubricants 2022, 10, 77. [Google Scholar] [CrossRef]
- DIN 51821; Prüfung von Schmierstoffen—Prüfung von Schmierfetten auf dem FAG-Wälzlagerfett-Prüfgerät FE9, 51821. DIN Media: Berlin, Germany, 2016.
- Grebe, M.; Müller, C.; Eiden, S.; Hiesinger, S. Entwicklung einer Screening-Prüfmethode für Schmierfette durch Kopplung von Thermo-Oxidativen Prüfverfahren mit einem Mechanisc-Dynamischen Mehrplatz-Wälzlagerprüfstand; DGMK: Hamburg, Germany, 2018. [Google Scholar]
- Dornhöfer, G. Ermittlung der Schmierfettgebrauchsdauer mit Zeitraffender Prüfmethode und Übertragbarkeit auf Reales Temperaturkollektiv. In Proceedings of the Annual Meeting of GfT, Dubai, United Arab Emirates, 13–14 November 2016; Gesellschaft für Tribologie: Jülich, Germany, 2016. [Google Scholar]
- Kuhn, E. Modellierung zum Schmierfettverschleiß im Stationären Reibungsprozess. In Proceedings of the Annual Meeting of the Gesellschaft für Tribologie (GfT), Göttingen, Germany, 25–27 September 2017; Gesellschaft für Tribologie: Jülich, Germany, 2017. ISBN 978-3-9817451-2-2. [Google Scholar]
- Zhou, Y.; Bosman, R.; Lugt, P.M. A Model for Shear Degradation of Lithium Soap Grease at Ambient Temperature. Tribol. Trans. 2018, 61, 61–70. [Google Scholar] [CrossRef]
- Hodapp, A.; Conrad, A.; Hochstein, B.; Jacob, K.-H.; Willenbacher, N. Effect of Base Oil and Thickener on Texture and Flow of Lubricating Greases: Insights from Bulk Rheometry, Optical Microrheology and Electron Microscopy. Lubricants 2022, 10, 55. [Google Scholar] [CrossRef]
- Lugt, P.M. Grease Lubrication in Rolling Bearings, 1st ed.; Tribology in Practice Series; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Aikin, A.A. The art of manufacturing grease—Research is ongoing to develop improved products. Tribol. Lubr. Technol. (TLT) 2020, 76, 44–46. [Google Scholar]
- Franco, J.M. Mixing rheometry for studying the manufacture of lubricating greases. Chem. Eng. Sci. 2005, 60, 2409–2418. [Google Scholar] [CrossRef]
- Hurley, S.; Cann, P.M.; Spikes, H.A. Lubrication and Reflow Properties of Thermally Aged Greases. Tribol. Trans. 2000, 43, 221–228. [Google Scholar] [CrossRef]
- Kuhn, E. Investigations into the Degradation of the Structure of Lubricating Greases. Tribol. Trans. 1998, 41, 247–250. [Google Scholar] [CrossRef]
- Cann, P.M. Grease Degradation in a Bearing Simulation Device. Tribol. Int. 2006, 39, 1698–1706. [Google Scholar] [CrossRef]
- Cann, P.M.; Webster, M.N.; Doner, J.P.; Wikstrom, V.; Lugt, P.M. Grease degradation in R0F bearing tests. Tribol. Trans. 2007, 50, 187–197. [Google Scholar] [CrossRef]
- Yu, Z.Q.; Yang, Z.G. Fatigue Failure Analysis of a Grease-Lubricated Roller Bearing from an Electric Motor. Fail. Anal. Prev. 2011, 11, 158–166. [Google Scholar] [CrossRef]
- Adhvaryu, A.; Sung, C.; Erhan, Z. Fatty Acids and Antioxidant Effects on Grease Microstructures. Ind. Crops Prod. 2005, 21, 285–291. [Google Scholar] [CrossRef]
- Couronne, I.; Vergne, P. Rheological Behavior of Greases: Part II—Effect of Thermal Aging, Correlation with Physico-Chemical Changes. Tribol. Trans. 2000, 43, 788–794. [Google Scholar] [CrossRef]
- Gonçalves, D.; Graça, B.; Campos, V.; Saebra, J.; Leckner, J.; Westbroek, R. Formulation, Rheology and Thermal Ageing of Polymer Greases—Part I: Influence of the Thickener Content. Tribol. Int. 2015, 87, 160–170. [Google Scholar] [CrossRef]
- Shen, T.; Hu, M.H.; Liu, R.G.; Liu, Q.L. The Influence of Static Thermal Degradation on Microstructure and Rheological Properties of Lithium–Calcium Base Grease. Tribology 2011, 31, 581–586. [Google Scholar]
- Dokter, J.; Osara, J.A. On the Thermal Degradation of Lubricant Grease: Degradation Analysis. J. Tribol. 2025, 148, 024603. [Google Scholar] [CrossRef]
- Pan, J.; Cheng, Y.; Yang, J. Structural Degradation of a Lithium Lubricating Grease after Thermal Ageing. J. Chem. Eng. Jpn. 2016, 49, 579–587. [Google Scholar] [CrossRef]
- Delgado, M.A.; Sánchez, M.C.; Valencia, C.; Franco, J.M.; Gallegos, C. Relationship Among Microstructure, Rheology and Processing of a Lithium Lubricating Grease. Chem. Eng. Res. Des. 2005, 83, 1085–1092. [Google Scholar] [CrossRef]
- Delgado, M.A.; Valencia, C.; Sánchez, M.C.; Franco, J.M.; Gallegos, C. Influence of Soap Concentration and Oil Viscosity on the Rheology and Microstructure of Lubricating Greases. Ind. Eng. Chem. Res. 2006, 45, 1902–1910. [Google Scholar] [CrossRef]
- Rezasoltani, A.; Khonsari, M. On the Correlation between Mechanical Degradation of Lubricating Grease and Entropy. Tribol. Lett. 2014, 56, 197–204. [Google Scholar] [CrossRef]
- ASTM D8206-18; Oxidation Stability of Lubricating Greases—Rapid Small Scale Oxidation Test (RSSOT), D8206. ASTM International: West Conshohocken, PA, USA, 2018.
- Höger, O. Protokoll NAK “Alterungsbeständigkeit von Schmierfetten”—DIN 51808/DIN 51830. Fachausschuss Mineralöl- und Brennstoffnormung—FAM Within Normenausschuss Materialprüfung (NMP) of DIN, Berlin, Protokoll with Attachments, April 2025. Available online: https://docs.din.de/din-documents/ui/#!/browse/din/54764014 (accessed on 26 November 2025).
- DIN 51830-2:2025-02; Prüfung von Schmierstoffen—Bestimmung der Oxidationsbeständigkeit von Schmierfetten—Teil_2: Ermittlung der Temperaturabhängigen Oxidation Induction Time zur Berechnung der Aktivierungsenergie der Thermo-oxidativen Degradation. DIN Media: Berlin, Germany, 2025. [CrossRef]
- DIN 51830-1:2022-10; Prüfung von Schmierstoffen—Bestimmung der Oxidationsbeständigkeit von Schmierfetten—Teil_1: Beschleunigtes Verfahren. DIN Media: Berlin, Germany, 2022. [CrossRef]
- Baart, P.; Van Der Vorst, B.; Lugt, P.M.; Van Ostayen, R.A.J. Oil-Bleeding Model for Lubricating Grease Based on Viscous Flow Through a Porous Microstructure. Tribol. Trans. 2010, 53, 340–348. [Google Scholar] [CrossRef]
- Cyriac, F.; Lugt, P.M.; Bosman, R.; Padberg, C.J.; Venner, C.H. Effect of Thickener Particle Geometry and Concentration on the Grease EHL Film Thickness at Medium Speeds. Tribol. Lett. 2016, 61, 18. [Google Scholar] [CrossRef]
- Hurley, S.; Cann, P.M. Examination of grease structure by SEM and AFM techniques. NLGI Spokesm. 2001, 65, 17–26. [Google Scholar]
- Magnin, A.; Piau, J.M. Application of freeze-fracture technique for analyzing the structure of lubricant greases. J. Mater. Res. 1989, 4, 990–995. [Google Scholar] [CrossRef]
- Sánchez, M.C.; Franco, J.M.; Valencia, C.; Gallegos, C.; Urquiola, F.; Urchequi, R. Atomic Force Microscopy and Thermo-Rheological Characterisation of Lubricating Greases. Tribol. Lett. 2011, 41, 463–470. [Google Scholar] [CrossRef]
- Roman, C.; Valencia, C.; Franco, J.M. AFM and SEM Assessment of Lubricating Grease Microstructures: Influence of Sample Preparation Protocol, Frictional Working Conditions and Composition. Tribol. Lett. 2016, 63, 20–50. [Google Scholar] [CrossRef]
- Rawat, S.S.; Harsha, A.P.; Chouhan, A. Effect of Graphene-Based Nanoadditives on the Tribological and Rheological Performance of Paraffin Grease. J. Mater. Eng. Perform. 2020, 29, 2235–2247. [Google Scholar] [CrossRef]
- Lin, C.L.; Meehan, P.A. Microstructure Characterization of Degraded Grease in Axle Roller Bearings. Tribol. Trans. 2019, 62, 667–687. [Google Scholar] [CrossRef]
- Ackermann, H. Abschlussbericht zum DGMK-Vorhaben 809: Untersuchungen zur Bestimmung der Verteilung von Stoffbestandteilen in Schmierfetten; DGMK: Hamburg, Germany, 2022. [Google Scholar]
- Muller, D.; Matta, C.; Thijssen, R.; Yusof, M.N.; van Eijk, M.C.P.; Chatra, S. Novel polymer grease microstructure and its proposed lubrication mechanism in rolling/sliding contacts. Tribol. Int. 2017, 110, 278–290. [Google Scholar] [CrossRef]
- Matzke, M.; Bayer-Faiß, S.; Höger, O.; Grebe, M. Thermo-oxidative grease service life evaluation—laboratory study with the catalytically accelerated method using the RapidOxy. Tribol. Schmier. 2022, 69, 41–49. [Google Scholar] [CrossRef]
- König, M.; UNITI, Dortmund, Germany. Grundlagen der Tribologie, training material within the course „Technischer Mineralölkaufmann/Technische Mineralölkauffrau“, module 2. 2025. [Google Scholar]
- Salomonsson, L.; Stang, G.; Zhmud, B. Oil/Thickener Interactions and Rheology of Lubricating Greases. Tribol. Trans. 2007, 50, 302–309. [Google Scholar] [CrossRef]
- DIN 51810-1; Prüfung von Schmierstoffen—Prüfung der Rheologischen Eigenschaften von Schmierfetten—Teil 1: Bestimmung der Scherviskosität mit dem Rotationsviskosimeter und dem Messsystem Kegel/Platte, 51810–1. DIN Media: Berlin, Germany, 2017.
- DIN 51810-4:2021-04; Prüfung von Schmierstoffen_-Bestimmung der Konsistenz von metallverseiften Schmierfetten mit dem Oszillationsrheometer und dem Messsystem Kegel/Platte. DIN Media: Berlin, Germany, 2021. [CrossRef]
- König, M.; DiNicala, K.; Lanxess, Mannheim, Germany. Introduction into mechanisms, testing and products, internal training materials. 2022. [Google Scholar]
- Tidona, G.; Grebe, M. Einsatz von maschinellem Lernen in der Schmierfettentwicklung (DGMK 871). In Proceedings of the Status Report at the “DGMK Lubricant Day”, Virtual, 11 November 2025. [Google Scholar]





















| Load | Mechanical | Thermal | Oxidative | Catalytic | ||
|---|---|---|---|---|---|---|
| Method | ||||||
| Shear Apparatus acc. Klein | X | |||||
| N2 | TGA + DSC (N2) | X | ||||
| Oven aging (covered) | X | X/- | ||||
| O2 | TGA + DSC (O2) | X | X | |||
| Oven aging (open) | X | X | X/- | |||
| RapidOxy (DIN 51830-1) | X | X | ||||
| RapidOxy (DIN 51830-2) | X | X | X/- | |||
| Roller bearing test (DIN 51821/FE9) | X | X | X | X | ||
| DIN 51830-1 | DIN 51830-2 | |
|---|---|---|
| Amount of grease | 4 g | 0.5 g |
| Sample carrier | Glass dish | Steel or copper plates in a glass dish |
| Temperature | 140 °C/150 °C/160 °C/170 °C | |
| Atmosphere | Oxygen 5.1 | |
| Initial pressure | 700 kPa | |
| Termination criterion | Pressure drop > 10% | Pressure drop > 30% |
| Result | ![]() | ![]() |
| Research objective | Oxidation stability | Arrhenius activation energy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grebe, M.; Ruland, M.; Kuckelberg, D.; Eurich, N. Influence of Thermal, Oxidative, Catalytic, and Mechanical Effects on Thickener Degradation and the Associated Lubricating Performance of Greases. Lubricants 2025, 13, 530. https://doi.org/10.3390/lubricants13120530
Grebe M, Ruland M, Kuckelberg D, Eurich N. Influence of Thermal, Oxidative, Catalytic, and Mechanical Effects on Thickener Degradation and the Associated Lubricating Performance of Greases. Lubricants. 2025; 13(12):530. https://doi.org/10.3390/lubricants13120530
Chicago/Turabian StyleGrebe, Markus, Michael Ruland, Dagmar Kuckelberg, and Natalia Eurich. 2025. "Influence of Thermal, Oxidative, Catalytic, and Mechanical Effects on Thickener Degradation and the Associated Lubricating Performance of Greases" Lubricants 13, no. 12: 530. https://doi.org/10.3390/lubricants13120530
APA StyleGrebe, M., Ruland, M., Kuckelberg, D., & Eurich, N. (2025). Influence of Thermal, Oxidative, Catalytic, and Mechanical Effects on Thickener Degradation and the Associated Lubricating Performance of Greases. Lubricants, 13(12), 530. https://doi.org/10.3390/lubricants13120530



