# An Analysis of Reaction Forces in Crankshaft Support Systems

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results

## 4. Discussion

## 5. Conclusions

- To enable correct measurements of the geometric deviations of the crankshafts, it is necessary to support their main journals with a set of supports whose prism heads do not restrict the displacements of the journals subjected to axial position errors.
- The determined values of the reaction forces ensuring the elimination of shaft deflections, assuming the nodal support, can be treated as corresponding to the resultant reaction forces realized by the prismatic heads.
- The use of the developed system in practical measurements may improve the measurement techniques used so far, increasing the efficiency and credibility of the assessment of the geometrical condition of the crankshafts.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Murawski, L. Kinematic of marine piston-crankshaft system. J. KONES Powertrain Transp.
**2015**, 22, 155–162. [Google Scholar] [CrossRef] [Green Version] - Gomes, J.; Gaivota, N.; Martins, R.F.; Pires Silva, P. Failure analysis of crankshafts used in maritime V12 diesel engines. Eng. Fail. Anal.
**2018**, 92, 466–479. [Google Scholar] [CrossRef] - Sun, J.; Wang, J.; Gui, C. Whole crankshaft beam-element finite-element method for calculating crankshaft deformation and bearing load of an engine. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
**2010**, 224, 299–303. [Google Scholar] [CrossRef] - Walczyk, W.; Milenin, A.; Pietrzyk, M. Computer aided design of new forging technology for crank shafts. Steel Res. Int.
**2011**, 82, 187–194. [Google Scholar] [CrossRef] - Nozdrzykowski, K.; Grządziel, Z.; Dunaj, P. Analysis of contact deformations in support systems using roller prisms. Materials
**2021**, 14, 2644. [Google Scholar] [CrossRef] [PubMed] - Koehler, H.; Partes, K.; Seefeld, T.; Vollertsen, F. Laser reconditioning of crankshafts: From lab to application. Phys. Procedia
**2010**, 5, 387–397. [Google Scholar] [CrossRef] [Green Version] - Ramana, A.V.; Raghav, G.R. Dynamic load analyzing and optimization of crankshaft. J. Crit. Rev.
**2020**, 7, 2332–2338. [Google Scholar] - Grubišić, V.; Vulić, N.; Sönnichsen, S. Structural durability validation of bearing girders in marine Diesel engines. Eng. Fail. Anal.
**2008**, 15, 247–260. [Google Scholar] [CrossRef] - Murawski, L. Shaft line alignment analysis taking ship construction flexibility and deformations into consideration. Mar. Struct.
**2005**, 18, 62–84. [Google Scholar] [CrossRef] - Nozdrzykowski, K. Prevention of elastic strains in flexible large size machine parts with the use of elastic support. Mach. Dyn. Res.
**2015**, 39, 111–122. [Google Scholar] - Gu, T.; Qian, X.; Lou, P. Research on high precision rapid online measurement system of crankshaft based on multi-station. J. Phys. Conf. Ser.
**2021**, 2101, 012016. [Google Scholar] [CrossRef] - Liu, Y.; Zhou, H.; Zhao, D.; Guan, X.; Li, G.; Feng, F. Online approach to measuring relative location of spatial geometric features of long rotating parts. Measurement
**2022**, 187, 110317. [Google Scholar] [CrossRef] - Bin, G.; Li, X.; Shen, Y.; Wang, W. Development of whole-machine high speed balance approach for turbomachinery shaft system with N+1 supports. Measurement
**2018**, 122, 368–379. [Google Scholar] [CrossRef] - Nozdrzykowski, K.; Grządziel, Z.; Dunaj, P. Determining geometrical deviations of crankshafts with limited detection possibilities due to support conditions. Measurement
**2022**, 189, 110430. [Google Scholar] [CrossRef] - Jadhav, A.; Chalwa, V.; Gaikwad, P. Fatigue failure analysis of marine engine crankshaft. Int. J. Eng. Res. Technol.
**2013**, 2, 614–621. [Google Scholar] - Fonte, M.; Duarte, P.; Anes, V.; Freitas, M.; Reis, L. On the assessment of fatigue life of marine diesel engine crankshafts. Eng. Fail. Anal.
**2015**, 56, 51–57. [Google Scholar] [CrossRef] - Dukalski, P.; Będkowski, B.; Parczewski, K.; Wnęk, H.; Urbaś, A.; Augustynek, K. Analysis of the influence of motors installed in passenger car wheels on the torsion beam of the rear axle suspension. Energies
**2022**, 15, 222. [Google Scholar] [CrossRef] - Grzejda, R.; Warzecha, M.; Urbanowicz, K. Determination of the preload of bolts for structural health monitoring of a multi-bolted joint: FEM approach. Lubricants
**2022**, 10, 75. [Google Scholar] [CrossRef] - Jiménez Espadafor, F.; Becerra Villanueva, J.; Torres García, M. Analysis of a diesel generator crankshaft failure. Eng. Fail. Anal.
**2009**, 16, 2333–2341. [Google Scholar] [CrossRef] - Becerra, J.A.; Jimenez, F.J.; Torres, M.; Sanchez, D.T.; Carvajal, E. Failure analysis of reciprocating compressor crankshafts. Eng. Fail. Anal.
**2011**, 18, 735–746. [Google Scholar] [CrossRef] - Sun, M.Y.; Lu, S.P.; Li, D.Z.; Li, Y.Y.; Lang, X.G.; Wang, S.Q. Three-dimensional finite element method simulation and optimization of shrink fitting process for a large marine crankshaft. Mater. Des.
**2010**, 31, 4155–4164. [Google Scholar] [CrossRef] - Çevik, G.; Gürbüz, R. Evaluation of fatigue performance of a fillet rolled diesel engine crankshaft. Eng. Fail. Anal.
**2013**, 27, 250–261. [Google Scholar] [CrossRef] - Metkar, R.M.; Sunnapwar, V.K.; Hiwase, S.D.; Anki, V.S.; Dumpa, M. Evaluation of FEM based fracture mechanics technique to estimate life of an automotive forged steel crankshaft of a single cylinder diesel engine. Procedia Eng.
**2013**, 51, 567–572. [Google Scholar] [CrossRef] [Green Version] - Kakade, P.; Pasarkar, M.D. Analyzing and identifying various approaches for crankshaft failures. J. Multidiscip. Eng. Sci. Technol.
**2015**, 2, 76–92. [Google Scholar] - Król, R.; Siemiątkowski, Z. The analysis of shrink-fit connection—The methods of heating and the factors influencing the distribution of residual stresses. Heliyon
**2019**, 5, e02839. [Google Scholar] [CrossRef] - Chybowski, L.; Nozdrzykowski, K.; Grządziel, Z.; Jakubowski, A.; Przetakiewicz, W. Method to increase the accuracy of large crankshaft geometry measurements using counterweights to minimize elastic deformations. Appl. Sci.
**2020**, 10, 4722. [Google Scholar] [CrossRef] - Xing, H.; Wu, Q.; Wu, Z.; Duan, S. Elastohydrodynamic lubrication analysis of marine sterntube bearing based on multi-body dynamics. Energy Procedia
**2012**, 16, 1046–1051. [Google Scholar] [CrossRef] [Green Version] - Nozdrzykowski, K. Methodology of Geometric Measurements of Deviations of Cylindrical Surfaces of Large-Size Machine Elements Based on the Example of Ship Engine Crankshafts; Scientific Publishing House of the Maritime University of Szczecin: Szczecin, Poland, 2013. (In Polish) [Google Scholar]
- Nozdrzykowski, K.; Janecki, D. Comparative studies of reference measurements of cylindrical surface roundness profiles of large machine components. Metrol. Meas. Syst.
**2014**, 21, 67–76. [Google Scholar] [CrossRef] [Green Version] - Nozdrzykowski, K.; Chybowski, L. A force-sensor-based method to eliminate deformation of large crankshafts during measurements of their geometric condition. Sensors
**2019**, 19, 3507. [Google Scholar] [CrossRef] [Green Version] - Chybowski, L.; Nozdrzykowski, K.; Grządziel, Z.; Dorobczyński, L. Evaluation of model-based control of reaction forces at the supports of large-size crankshafts. Sensors
**2020**, 20, 2654. [Google Scholar] [CrossRef]

**Figure 1.**FEM model with the applied boundary conditions for the crankshaft support by the concentrated forces on the nodes located at the half-length of main journals.

**Figure 2.**The values of the reaction forces for removing deformations on the individual main journals for the initial angular position of the shaft (angle of rotation 0°).

**Figure 3.**The values of the reaction forces when changing the crankshaft position within the range of full rotation angle 0 ÷ 360° presented in: (

**a**) the Cartesian coordinate system, (

**b**) the polar coordinate system.

**Figure 4.**The calculated values of the reaction forces, based on the FEM programs Midas NFX 2020 and PrePoMax, ensuring the elimination of deformations on the individual main journals for the initial position of the crankshaft (angle of rotation 0°).

**Figure 6.**The values of the reaction forces for “rigid” rollers: (

**a**) resultant reactions, (

**b**) vertical reactions, (

**c**) horizontal reactions.

**Figure 7.**The values of the reaction forces for “compliant” rollers: (

**a**) resultant reactions, (

**b**) vertical reactions, (

**c**) horizontal reactions.

**Figure 8.**Resultant reaction forces on adjacent prism head rolls (

**a**) and total resultant reaction forces (

**b**) calculated using Midas NFX 2020 and Solid Works Simulation FEA programs.

**Figure 9.**The values of the reaction forces for “rigid” rollers and for the crankshaft with the main journals coaxial misalignment: (

**a**) resultant reactions, (

**b**) vertical reactions, (

**c**) horizontal reactions.

Parameter | Value |
---|---|

Crankshaft length | 3630 mm |

Crankshaft weight | 9360 N |

Number of crank journals | 8 |

Number of main journals | 10 |

Main journal diameter | 149 mm |

Crank journal diameter | 144 mm |

Crank dimensions | 252 mm × 358 mm (oval) |

Material Poison ratio (steel) | 0.3 |

Material Young modulus (steel) | 210 GPa |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Nozdrzykowski, K.; Grządziel, Z.; Grzejda, R.; Warzecha, M.; Stępień, M.
An Analysis of Reaction Forces in Crankshaft Support Systems. *Lubricants* **2022**, *10*, 151.
https://doi.org/10.3390/lubricants10070151

**AMA Style**

Nozdrzykowski K, Grządziel Z, Grzejda R, Warzecha M, Stępień M.
An Analysis of Reaction Forces in Crankshaft Support Systems. *Lubricants*. 2022; 10(7):151.
https://doi.org/10.3390/lubricants10070151

**Chicago/Turabian Style**

Nozdrzykowski, Krzysztof, Zenon Grządziel, Rafał Grzejda, Mariusz Warzecha, and Mateusz Stępień.
2022. "An Analysis of Reaction Forces in Crankshaft Support Systems" *Lubricants* 10, no. 7: 151.
https://doi.org/10.3390/lubricants10070151