A Semantic Annotation Pipeline towards the Generation of Knowledge Graphs in Tribology
Abstract
:1. Introduction
2. Theory and Methods
2.1. Domain Theory from Tribology
2.2. The TribAIn Ontology
- Which tribological systems were investigated under dry-running conditions using a solid lubricant coating?
- Which variables were tested regarding their influence on the behavior of a material pairing?
- Which wear rate was calculated of sample XY?
2.3. Ontologies, Knowledge Graphs and Semantic Annotation
“Commercially available thrust ball bearings 51201 according to ISO 104 […] consisting of shaft washer, housing washer and ball cage assembly were used as substrates (Figure 1a).”
2.4. Natural Language Processing
2.5. NLP Downstream Tasks
3. Semantic Annotation Pipeline
3.1. Document Extraction
3.2. Document Annotation
3.3. Document Analysis
4. Implementation and Evaluation
4.1. Web-Application
4.2. Resulting Knowledge Graph
4.3. Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 3, 263–284. [Google Scholar] [CrossRef]
- Zhang, Z.; Yin, N.; Chen, S.; Liu, C. Tribo-informatics: Concept, architecture, and case study. Friction 2021, 3, 642–655. [Google Scholar] [CrossRef]
- Rosenkranz, A.; Marian, M.; Profito, F.J.; Aragon, N.; Shah, R. The Use of Artificial Intelligence in Tribology—A Perspective. Lubricants 2021, 1, 2. [Google Scholar] [CrossRef]
- Hasan, M.S.; Kordijazi, A.; Rohatgi, P.K.; Nosonovsky, M. Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods. J. Tribol. 2022, 144, 011701. [Google Scholar] [CrossRef]
- Subrahmanyam, M.; Sujatha, C. Using neural networks for the diagnosis of localized defects in ball bearings. Tribol. Int. 1997, 10, 739–752. [Google Scholar] [CrossRef]
- Prost, J.; Cihak-Bayr, U.; Neacșu, I.A.; Grundtner, R.; Pirker, F.; Vorlaufer, G. Semi-Supervised Classification of the State of Operation in Self-Lubricating Journal Bearings Using a Random Forest Classifier. Lubricants 2021, 5, 50. [Google Scholar] [CrossRef]
- Sathiya, P.; Aravindan, S.; Haq, A.N.; Paneerselvam, K. Optimization of friction welding parameters using evolutionary computational techniques. J. Mater. Process. Technol. 2009, 5, 2576–2584. [Google Scholar] [CrossRef]
- Cetinel, H. The artificial neural network based prediction of friction properties of Al2O3-TiO2 coatings. Ind. Lubr. Tribol. 2012, 5, 288–293. [Google Scholar] [CrossRef]
- Boidi, G.; Da Silva, M.R.; Profito, F.J.; Machado, I.F. Using Machine Learning Radial Basis Function (RBF) Method for Predicting Lubricated Friction on Textured and Porous Surfaces. Surf. Topogr. Metrol. Prop. 2020, 4, 44002. [Google Scholar] [CrossRef]
- Bhaumik, S.; Pathak, S.D.; Dey, S.; Datta, S. Artificial intelligence based design of multiple friction modifiers dispersed castor oil and evaluating its tribological properties. Tribol. Int. 2019, 140, 105813. [Google Scholar] [CrossRef]
- Sattari Baboukani, B.; Ye, Z.; Reyes, K.G.; Nalam, P.C. Prediction of Nanoscale Friction for Two-Dimensional Materials Using a Machine Learning Approach. Tribol. Lett. 2020, 68, 1–14. [Google Scholar] [CrossRef]
- Marian, M.; Tremmel, S. Current Trends and Applications of Machine Learning in Tribology—A Review. Lubricants 2021, 9, 86. [Google Scholar] [CrossRef]
- Stipčević, M.; Bowers, J.E. Spatio-temporal optical random number generator. Opt. Express 2015, 9, 11619–11631. [Google Scholar] [CrossRef] [Green Version]
- Vinoth, A.; Datta, S. Design of the ultrahigh molecular weight polyethylene composites with multiple nanoparticles: An artificial intelligence approach. J. Compos. Mater. 2020, 2, 179–192. [Google Scholar] [CrossRef]
- Bhaumik, S.; Mathew, B.R.; Datta, S. Computational intelligence-based design of lubricant with vegetable oil blend and various nano friction modifiers. Fuel 2019, 241, 733–743. [Google Scholar] [CrossRef]
- Feigenbaum, E.A. Knowledge Engineering: The Applied Side of Artificial Intelligence. Ann. N. Y. Acad. Sci. 1984, 426, 91–107. [Google Scholar] [CrossRef]
- Cullen, J.; Bryman, A. The knowledge acquisition bottleneck: Time for reassessment? Expert Syst. 1988, 3, 216–225. [Google Scholar] [CrossRef]
- Tallian, T.E. Tribological Design Decisions Using Computerized Databases. J. Tribol. 1987, 3, 381–386. [Google Scholar] [CrossRef]
- Tallian, T.E. A Computerized Expert System for Tribological Failure Diagnosis. J. Tribol. 1989, 2, 238–244. [Google Scholar] [CrossRef]
- Studer, R.; Benjamins, V.R.; Fensel, D. Knowledge engineering: Principles and methods. Data Knowl. Eng. 1998, 1–2, 161–197. [Google Scholar] [CrossRef] [Green Version]
- Morik, K. Underlying assumptions of knowledge acquisition and machine learning. Knowl. Acquis. 1991, 2, 137–156. [Google Scholar] [CrossRef]
- Hoekstra, R. The knowledge reengineering bottleneck. Semant. Web 2010, 2, 111–115. [Google Scholar] [CrossRef]
- Chandrasegaran, S.K.; Ramani, K.; Sriram, R.D.; Horváth, I.; Bernard, A.; Harik, R.F.; Gao, W. The evolution, challenges, and future of knowledge representation in product design systems. Comput.-Aided Des. 2013, 2, 204–228. [Google Scholar] [CrossRef]
- Verhagen, W.J.; Bermell-Garcia, P.; van Dijk, R.E.; Curran, R. A critical review of Knowledge-Based Engineering: An identification of research challenges. Adv. Eng. Inform. 2012, 1, 5–15. [Google Scholar] [CrossRef]
- Gruber, T.R. A translation approach to portable ontology specifications. Knowl. Acquis. 1993, 2, 199–220. [Google Scholar] [CrossRef]
- Bodenreider, O. Biomedical Ontologies in Action: Role in Knowledge Management, Data Integration and Decision Support. Yearb. Med. Inform. 2008, 1, 67–79. [Google Scholar] [CrossRef] [Green Version]
- The Gene Ontology Consortium. Creating the gene ontology resource: Design and implementation. Genome Res. 2001, 8, 1425–1433. [Google Scholar] [CrossRef] [Green Version]
- Esnaola-Gonzalez, I.; Fernandez, I. Materials’ Tribological Characterisation: An OntoCommons Use Case. In Proceedings of the ESWC Workshop DORIC-MM, Online, 7 June 2021. [Google Scholar]
- Kügler, P.; Marian, M.; Schleich, B.; Tremmel, S.; Wartzack, S. tribAIn—Towards an Explicit Specification of Shared Tribological Understanding. Appl. Sci. 2020, 13, 4421. [Google Scholar] [CrossRef]
- Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. DBpedia: A Nucleus for a Web of Open Data; ISWC 2007, ASWC 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 722–735. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, J.M.; Bader, G.D. Transfer learning for biomedical named entity recognition with neural networks. Bioinformatics 2018, 23, 4087–4094. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 2020, 4, 1234–1240. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding; NAACL-HLT; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 4171–4186. [Google Scholar] [CrossRef]
- Czichos, H.; Habig, K.-H. Tribologie-Handbuch, 4th ed.; Springer: Wiesbaden, Germany, 2015. [Google Scholar]
- Marian, M. Numerische Auslegung von Oberflächenmikrotexturen für Geschmierte Tribologische Kontakte; FAU University Press: Erlangen, Germany, 2021. [Google Scholar] [CrossRef]
- Vakis, A.I.; Yastrebov, V.A.; Scheibert, J.; Nicola, L.; Dini, D.; Minfray, C.; Almqvist, A.; Paggi, M.; Lee, S.; Limbert, G.; et al. Modeling and simulation in tribology across scales: An overview. Tribol. Int. 2018, 125, 169–199. [Google Scholar] [CrossRef]
- Soldatova, L.N.; King, R.D. An ontology of scientific experiments. J. R. Soc. Interface 2006, 11, 795–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- W3C Recommendation. OWL 2 Web Ontology Language Overview. Available online: http://www.w3.org/TR/owl2-overview/ (accessed on 13 October 2021).
- Baader, F. The description logic handbook: Theory, Implementation, and Applications; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- W3C Recommendation. RDF 1.1 Turtle: Terse RDF Triple Language. Available online: https://www.w3.org/TR/turtle/ (accessed on 14 December 2021).
- Gruber, T.R. Toward principles for the design of ontologies used for knowledge sharing? Int. J. Hum.-Comput. Stud. 1995, 5–6, 907–928. [Google Scholar] [CrossRef]
- Navigli, R.; Velardi, P. From Glossaries to Ontologies: Extracting Semantic Structure from Textual Definitions. In Ontology Learning and Population. Bridging the Gap between Text and Knowledge; Buitelaar, P., Cimiano, P., Eds.; IOS Press: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Marian, M.; Feile, K.; Rothammer, B.; Bartz, M.; Wartzack, S.; Seynstahl, A.; Tremmel, S.; Krauß, S.; Merle, B.; Böhm, T.; et al. Ti3C2Tx solid lubricant coatings in rolling bearings with remarkable performance beyond state-of-the-art materials. Appl. Mater. Today 2021, 25, 101202. [Google Scholar] [CrossRef]
- Wyatt, B.C.; Rosenkranz, A.; Anasori, B. 2D MXenes: Tunable Mechanical and Tribological Properties. Adv. Mater. 2021, 17, e2007973. [Google Scholar] [CrossRef] [PubMed]
- Marian, M.; Berman, D.; Rota, A.; Jackson, R.L.; Rosenkranz, A. Layered 2D Nanomaterials to Tailor Friction and Wear in Machine Elements—A Review. Adv. Mater. Interfaces 2021, 9, 2101622. [Google Scholar] [CrossRef]
- Marian, M.; Tremmel, S.; Wartzack, S.; Song, G.; Wang, B.; Yu, J.; Rosenkranz, A. Mxene nanosheets as an emerging solid lubricant for machine elements–Towards increased energy efficiency and service life. Appl. Surf. Sci. 2020, 523, 146503. [Google Scholar] [CrossRef]
- Domingue, J. Handbook of Semantic Web Technologies; Springer: Berlin, Germany, 2011. [Google Scholar]
- Goldberg, Y. Neural Network Methods for Natural Language Processing. Synth. Lect. Hum. Lang. Technol. 2017, 1, 1–309. [Google Scholar] [CrossRef]
- Jurafsky, D.; Martin, J.H. Speech and Language Processing (Draft-Version from Dec 2020). Available online: https://web.stanford.edu/~jurafsky/slp3/ (accessed on 11 August 2021).
- Hu, J. An Overview for Text Representations in NLP. Blogpost: Towards Data Science. Available online: https://towardsdatascience.com/an-overview-for-text-representations-in-nlp-311253730af1?gi=4f92ddbafc7d (accessed on 18 October 2021).
- Schuster, M.; Nakajima, K. Japanese and Korean voice search. In Proceedings of the ICASSP 2012—2012 IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 25–30 March 2012; IEEE: New York, NY, USA; pp. 5149–5152. [Google Scholar] [CrossRef]
- Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. arXiv 2013, arXiv:1301.3781. [Google Scholar]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and Their Compositionality. arXiv 2013, arXiv:1310.4546. [Google Scholar]
- Koroteev, M.V. BERT: A Review of Applications in Natural Language Processing and Understanding. arXiv 2021, arXiv:2103.11943. [Google Scholar]
- Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized Word Representations; NAC, Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 2227–2237. [Google Scholar] [CrossRef] [Green Version]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. Available online: https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf (accessed on 14 December 2021).
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Ghelani, S. From Word Embeddings to Pretrained Language Models—A New Age in NLP-Part 2. Blogpost: Towards Data Science. Available online: https://towardsdatascience.com/from-word-embeddings-to-pretrained-language-models-a-new-age-in-nlp-part-2-e9af9a0bdcd9 (accessed on 7 October 2021).
- Alammar, J. The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning). Blogpost. Available online: http://jalammar.github.io/illustrated-bert/ (accessed on 14 December 2021).
- Alammar, J. The Illustrated Transformer. Blogpost. Available online: http://jalammar.github.io/illustrated-transformer/ (accessed on 20 October 2021).
- Beltagy, I.; Lo, K.; Cohan, A. SciBERT: A Pretrained Language Model for Scientific Text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 3613–3618. [Google Scholar] [CrossRef]
- Joshi, M.; Chen, D.; Liu, Y.; Weld, D.S.; Zettlemoyer, L.; Levy, O. SpanBERT: Improving Pre-training by Representing and Predicting Spans. Trans. Assoc. Comput. Linguist. 2020, 8, 64–77. [Google Scholar] [CrossRef]
- Russell, S.J.; Norvig, P. Artificial Intelligence—A Modern Approach, 4. Auflage; Pearson: Boston, MA, USA, 2021. [Google Scholar]
- Cho, H.; Lee, H. Biomedical named entity recognition using deep neural networks with contextual information. BMC Bioinform. 2019, 1, 735. [Google Scholar] [CrossRef]
- McKie, J.X. PyMuPDF 1.19.0. GitHub Repository. Available online: https://github.com/pymupdf/PyMuPDF (accessed on 21 October 2021).
- Akbik, A.; Bergmann, T.; Blythe, D.; Rasul, K.; Schweter, S.; Vollgraf, R. FLAIR: An easy-to-use framework for state-of-the-art NLP. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), Minneapolis, MN, USA, 2–7 June 2019; pp. 54–59. [Google Scholar] [CrossRef]
- Marian, M.; Song, G.C.; Wang, B.; Fuenzalida, V.M.; Krauß, S.; Merle, B.; Tremmel, S.; Wartzack, S.; Yu, J.; Rosenkranz, A. Effective usage of 2D MXene nanosheets as solid lubricant–Influence of contact pressure and relative humidity. Appl. Surf. Sci. 2020, 531, 147311. [Google Scholar] [CrossRef]
- Mekgwe, G.N.; Akinribide, O.J.; Langa, T.; Obadele, B.A.; Olubambi, P.A.; Lethabane, L.M. Effect of graphite addition on the tribological properties of pure titanium carbonitride prepared by spark plasma sintering. IOP Conf. Ser. Mater. Sci. Eng. 2019, 499, 12011. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, J. Coordinating influence of multilayer graphene and spherical SnAgCu for improving tribological properties of a 20CrMnTi material. RSC Adv. 2018, 25, 14129–14137. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Hu, S.; Feng, C.; Chen, E. The high temperature and varying temperature tribological performance of TiC coatings. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; p. 22032. [Google Scholar] [CrossRef] [Green Version]
- Byeong-Choon, G.; In-Sik, C. Microstructural Analysis and Wear Performance of Carbon-Fiber-Reinforced SiC Composite for Brake Pads. Materials 2017, 7, 701. [Google Scholar] [CrossRef]
- Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 1, 1929–1958. [Google Scholar]
- Gruber, T.R. How AI Can Enhance Our Memory, Work and Social Lives. TED Talk. 2017. Available online: https://www.ted.com/talks/tom_gruber_how_ai_can_enhance_our_memory_work_and_social_lives (accessed on 14 December 2021).
Document | Doc#1 | Doc#2 | Doc#3 | Doc#4 | Doc#5 |
---|---|---|---|---|---|
Chapter | 14 (16) | 11 (8) | 15 (14) | 14 (11) | 31 (9) |
Paragraph | 32 (35) | 11 (15) | 29 (26) | 14 (18) | 40 (18) |
Sentence | 179 (193) | 65 (67) | 124 (127) | 68 (55) | 237 (95) |
Word | 4213 (4547) | 1304 (1449) | 2898 (2937) | 1205 (1276) | 5192 (2241) |
Char | 26,127 (28,881) | 7497 (9160) | 17,119 (18,089) | 6998 (7759) | 30,928 (14,198) |
Abstract | true | true | true | true | true |
Document | Doc#1 | Doc#2 | Doc#3 | Doc#4 | Doc#5 |
---|---|---|---|---|---|
Figure | 12 (12) | 5 (5) | 12 (12) | 5 (5) | 12 (12) |
Incorrect area | 0 | 1 | 0 | 2 | 0 |
Additional Figure | 0 | 0 | 0 | 0 | 14 |
Document | Doc#1 | Doc#2 | Doc#3 | Doc#4 | Doc#5 |
---|---|---|---|---|---|
Table | 0 (1) | 1 (1) | 0 (0) | 0 (0) | 1 (1) |
Additional Table | 0 | 0 | 0 | 0 | 0 |
Incorrect cells | - | 0 | - | - | 0 |
Language Model | RNN Layers | Hidden Size | Dropout Rate | Learning Rate | Mini Batch Size |
---|---|---|---|---|---|
BERT | 1 | 128 | 0.0479 | 0.1 | 32 |
SciBERT | 1 | 128 | 0.0020 | 0.1 | 32 |
SpanBERT | 1 | 128 | 0.1454 | 0.15 | 32 |
Category | Score | BERT | SciBERT | SpanBERT | ||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | ||
Body structure | P | 0.8000 | 0.7037 | 0.7692 | 0.7037 | 0.6667 | 0.7097 | 0.7600 | 0.7600 | 0.7241 |
R | 0.8333 | 0.7917 | 0.8333 | 0.7917 | 0.8333 | 0.9167 | 0.7917 | 0.7917 | 0.8750 | |
F1 | 0.8163 | 0.7451 | 0.8000 | 0.7451 | 0.7407 | 0.8000 | 0.7755 | 0.7755 | 0.7924 | |
Composite element | P | 0.7833 | 0.7241 | 0.7272 | 0.7846 | 0.7286 | 0.7429 | 0.7576 | 0.8030 | 0.7812 |
R | 0.7833 | 0.7000 | 0.8000 | 0.8500 | 0.8500 | 0.8667 | 0.8333 | 0.8833 | 0.8333 | |
F1 | 0.7833 | 0.7118 | 0.7619 | 0.8160 | 0.7846 | 0.8000 | 0.7936 | 0.8412 | 0.8064 | |
Environmental medium | P | 1.0000 | 0.8000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8333 | 0.8333 | 1.0000 |
R | 0.8000 | 0.8000 | 0.8000 | 0.8000 | 0.6000 | 0.6000 | 1.0000 | 1.0000 | 0.8000 | |
F1 | 0.9000 | 0.8000 | 0.9000 | 0.9000 | 0.8000 | 0.8000 | 0.9167 | 0.9167 | 0.9000 | |
Geometry | P | 0.9375 | 0.8824 | 0.8750 | 0.7500 | 0.8235 | 0.8235 | 0.8824 | 0.8889 | 0.8325 |
R | 0.7895 | 0.8950 | 0.7368 | 0.6316 | 0.7368 | 0.7368 | 0.7895 | 0.8421 | 0.7368 | |
F1 | 0.8572 | 0.8887 | 0.8000 | 0.6857 | 0.7777 | 0.7777 | 0.8334 | 0.8649 | 0.7817 | |
Intermediate medium | P | 0.8462 | 0.7143 | 1.0000 | 0.9286 | 1.0000 | 0.8571 | 1.0000 | 1.0000 | 1.0000 |
R | 0.6111 | 0.5556 | 0.6111 | 0.7222 | 0.7222 | 0.6667 | 0.6667 | 0.6667 | 0.6667 | |
F1 | 0.7097 | 0.6250 | 0.7586 | 0.8125 | 0.8387 | 0.7500 | 0.8000 | 0.8000 | 0.8000 | |
Kinematic parameter | P | 0.6667 | 0.6667 | 0.6364 | 0.7273 | 0.6923 | 0.6923 | 0.8000 | 0.8000 | 0.7273 |
R | 0.8000 | 0.8000 | 0.7000 | 0.8000 | 0.9000 | 0.9000 | 0.8000 | 0.8000 | 0.8000 | |
F1 | 0.7273 | 0.7273 | 0.6667 | 0.7619 | 0.7826 | 0.7826 | 0.8000 | 0.8000 | 0.7619 | |
Manufacturing process | P | 0.6250 | 0.5000 | 0.6250 | 0.8182 | 0.6923 | 0.7143 | 0.7143 | 0.7500 | 0.6667 |
R | 0.4545 | 0.5455 | 0.4545 | 0.8182 | 0.8182 | 0.9091 | 0.4545 | 0.5455 | 0.5455 | |
F1 | 0.5263 | 0.5218 | 0.5263 | 0.8182 | 0.7500 | 0.8000 | 0.5555 | 0.6316 | 0.6000 | |
Operational parameter | P | 0.7222 | 0.7571 | 0.7647 | 0.7656 | 0.7937 | 0.8197 | 0.7059 | 0.7500 | 0.7424 |
R | 0.8525 | 0.8689 | 0.8525 | 0.8033 | 0.8197 | 0.8197 | 0.7869 | 0.8361 | 0.8033 | |
F1 | 0.7820 | 0.8092 | 0.8062 | 0.7840 | 0.8065 | 0.8197 | 0.7442 | 0.7907 | 0.7717 | |
Specification | P | 0.7143 | 0.7500 | 0.7368 | 0.6842 | 0.8235 | 0.7647 | 0.6190 | 0.7778 | 0.7778 |
R | 0.7895 | 0.7895 | 0.7368 | 0.6842 | 0.7368 | 0.6842 | 0.6842 | 0.7368 | 0.7368 | |
F1 | 0.7500 | 0.7692 | 0.7368 | 0.6842 | 0.7777 | 0.7222 | 0.6500 | 0.7567 | 0.7567 | |
Test method | P | 0.8947 | 0.8571 | 0.8571 | 0.8500 | 0.8095 | 0.8182 | 0.8889 | 0.8421 | 0.8497 |
R | 0.8947 | 0.9474 | 0.9474 | 0.8947 | 0.8947 | 0.9474 | 0.8421 | 0.8421 | 0.8497 | |
F1 | 0.8947 | 0.9000 | 0.9000 | 0.8718 | 0.8500 | 0.8781 | 0.8649 | 0.8421 | 0.8497 |
BERT | SciBERT | SpanBERT | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |
F1 (micro) | 0.7823 | 0.7570 | 0.7782 | 0.7847 | 0.7905 | 0.7992 | 0.7702 | 0.8065 | 0.7879 |
F1 (macro) | 0.7736 | 0.7443 | 0.7645 | 0.7868 | 0.7859 | 0.7880 | 0.7726 | 0.8012 | 0.7851 |
Document | Annotations | Knowledge Objects | Correctly Aggregated | Incorrectly Aggregated | Not Aggregated |
---|---|---|---|---|---|
Doc#1 | 944 | 236 | 59 | 12 | 11 |
Doc#2 | 296 | 68 | 21 | 1 | 11 |
Doc#3 | 609 | 98 | 57 | 4 | 2 |
Doc#4 | 323 | 75 | 32 | 5 | 0 |
Doc#5 | 400 | 70 | 36 | 2 | 14 |
2572 | 547 | 205 | 24 | 38 |
Question Answering | Decision Maker | |||||
---|---|---|---|---|---|---|
Document | GT | Answer Found | Additional Answers | Correct Answer | Incorrect Answer | No Answer |
Doc#1 | 26 | 16 | 15 | 13 | 1 | 10 |
Doc#2 | 20 | 13 | 18 | 7 | 11 | 9 |
Doc#3 | 20 | 9 | 13 | 7 | 4 | 13 |
Doc#4 | 16 | 8 | 8 | 7 | 4 | 16 |
Doc#5 | 24 | 12 | 14 | 9 | 6 | 8 |
96 | 58 | 68 | 43 | 26 | 56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kügler, P.; Marian, M.; Dorsch, R.; Schleich, B.; Wartzack, S. A Semantic Annotation Pipeline towards the Generation of Knowledge Graphs in Tribology. Lubricants 2022, 10, 18. https://doi.org/10.3390/lubricants10020018
Kügler P, Marian M, Dorsch R, Schleich B, Wartzack S. A Semantic Annotation Pipeline towards the Generation of Knowledge Graphs in Tribology. Lubricants. 2022; 10(2):18. https://doi.org/10.3390/lubricants10020018
Chicago/Turabian StyleKügler, Patricia, Max Marian, Rene Dorsch, Benjamin Schleich, and Sandro Wartzack. 2022. "A Semantic Annotation Pipeline towards the Generation of Knowledge Graphs in Tribology" Lubricants 10, no. 2: 18. https://doi.org/10.3390/lubricants10020018
APA StyleKügler, P., Marian, M., Dorsch, R., Schleich, B., & Wartzack, S. (2022). A Semantic Annotation Pipeline towards the Generation of Knowledge Graphs in Tribology. Lubricants, 10(2), 18. https://doi.org/10.3390/lubricants10020018