Cranio-Maxillo-Facial Reconstruction with Polyetheretherketone Patient-Specific Implants: Aesthetic and Functional Outcomes
Abstract
1. Introduction
2. Materials and Methods
Surgical Planning
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerbino, G.; Zavattero, E.; Zenga, F.; Bianchi, F.A.; Garzino-Demo, P.; Berrone, S. Primary and secondary reconstruction of complex craniofacial defects using polyetheretherketone custom-made implants. J. Craniomaxillofac. Surg. 2015, 43, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Namin, A.; Shokri, T.; Ducic, Y. Customized Orbit and Frontal Bone Implants. Facial Plast. Surg. 2020, 36, 711–714. [Google Scholar] [CrossRef] [PubMed]
- Gerbino, G.; Bianchi, F.A.; Zavattero, E.; Tartara, F.; Garbossa, D.; Ducati, A. Single-step resection and reconstruction using patient-specific implants in the treatment of benign cranio-orbital tumors. J. Oral. Maxillofac. Surg. 2013, 71, 1969–1982. [Google Scholar] [CrossRef] [PubMed]
- Oliver, J.D.; Eells, A.C.; Saba, E.S.; Boczar, D.; Restrepo, D.J.; Huayllani, M.T.; Sisti, A.; Hu, M.S.; Gould, D.J.; Forte, A.J. Alloplastic Facial Implants: A Systematic Review and Meta-Analysis on Outcomes and Uses in Aesthetic and Reconstructive Plastic Surgery. Aesthetic Plast. Surg. 2019, 43, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Lutz, J.C.; Assouline Vitale, L.S.; Graillon, N.; Foletti, J.M.; Schouman, T. Standard and Customized Alloplastic Facial Implants Refining Orthognathic Surgery: Outcome Evaluation. J. Oral. Maxillofac. Surg. 2020, 78, 1832.e1–1832.e12. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.Y.; Dhir, K.; Binder, W.J.; Hilger, P.A. Alloplastic Facial Implants. Facial Plast. Surg. 2021, 37, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Wu, C.T.; Lee, S.T.; Chen, P. Cranioplasty using polymethyl methacrylate prostheses. J. Clin. Neurosci. 2009, 16, 56–63. [Google Scholar] [CrossRef]
- Chepurnyi, Y.; Chernohorskyi, D.; Prykhodko, D.; Poutala, A.; Kopchak, A. Reliability of orbital volume measurements based on computed tomography segmentation: Validation of different algorithms in orbital trauma patients. J. Craniomaxillofac. Surg. 2020, 48, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Gibelli, D.; Cellina, M.; Gibelli, S.; Oliva, A.G.; Termine, G.; Pucciarelli, V.; Dolci, C.; Sforzi, C. Assessing symmetry of zygomatic bone through three-dimensional segmentation on computed tomography scan and “mirroring” procedure: A contribute on for reconstructive maxillofacial surgery. J. Craniomaxillofac. Surg. 2018, 46, 600–604. [Google Scholar] [CrossRef]
- Mishra, S.; Chowdhary, R. PEEK materials as an alternative to titanium in dental implants: A systematic review. Clin. Implant. Dent. Relat. Res. 2019, 21, 208–222. [Google Scholar] [CrossRef]
- Chepurnyi, Y.; Chernohorskyi, D.; Zhukovtceva, O.; Poutala, A.; Kopchak, A. Automatic evaluation of the orbital shape after application of conventional and patient-specific implants: Correlation of initial trauma patterns and outcome. J. Oral Biol. Craniofac. Res. 2020, 10, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Katsuragi, Y.; Kayano, S.; Akazawa, S.; Nagamatsu, S.; Koizumi, T.; Matsui, T.; Onitsuka, T.; Yurikusa, T.; Huang, W.C.; Nakagawa, M. Mandible reconstruction using the calcium-sulphate three-dimensional model and rubber stick: A new method, ‘mould technique’, for more accurate, efficient and simplified fabrication. J. Plast. Reconstr. Aesthet. Surg. 2011, 64, 614–622. [Google Scholar] [CrossRef] [PubMed]
- FACE-Q|AESTHETICS. Available online: https://qportfolio.org/face-q/aesthetics/ (accessed on 5 July 2024).
- Ponnappan, R.K.; Serhan, H.; Zarda, B.; Patel, R.; Albert, T.; Vaccaro, A.R. Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation. Spine J. 2009, 9, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef]
- Farooq, M.U.; Anwar, S.; Bhatti, H.A.; Kumar, M.S.; Ali, M.A.; Ammarullah, M.I. Electric Discharge Machining of Ti6Al4V ELI in Biomedical Industry: Parametric Analysis of Surface Functionalization and Tribological Characterization. Materials 2023, 16, 4458. [Google Scholar] [CrossRef]
- Moharil, S.; Reche, A.; Durge, K. Polyetheretherketone (PEEK) as a Biomaterial: An Overview. Cureus 2023, 15, e44307. [Google Scholar] [CrossRef]
- Kelly, C.P.; Cohen, A.J.; Yavuzer, R.; Jackson, I.T. Cranial bone grafting for orbital reconstruction: Is it still the best? J. Craniofac. Surg. 2005, 16, 181–185. [Google Scholar] [CrossRef]
- Eppley, B.L.; Kilgo, M.; Coleman, J.J. 3rd. Cranial reconstruction with computer-generated hard-tissue replacement patient-matched implants: Indications, surgical technique, and long-term follow-up. Plast. Reconstr. Surg. 2002, 109, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Kauke-Navarro, M.; Knoedler, L.; Knoedler, S.; Deniz, C.; Stucki, L.; Safi, A.F. Balancing beauty and science: A review of facial implant materials in craniofacial surgery. Front. Surg. 2024, 24, 1348140. [Google Scholar] [CrossRef]
- Alasseri, N.; Alasraj, A. Patient-specific implants for maxillofacial defects: Challenges and solutions. Maxillofac. Plast. Reconstr. Surg. 2020, 42, 15. [Google Scholar] [CrossRef]
- Lestari, W.D.; Adyono, N.; Faizin, A.K.; Haqiyah, A.; Sanjaya, K.H.; Nugroho, A.; Kusmasari, W.; Ammarullah, M.I. Optimization of 3D printed parameters for socket prosthetic manufacturing using the taguchi method and response surface methodology. Results Eng. 2024, 21, 101847. [Google Scholar] [CrossRef]
- Kim, M.M.; Boahene, K.D.; Byrne, P.J. Use of customized polyetheretherketone (PEEK) implants in the reconstruction of complex maxillofacial defects. Arch. Facial Plast. Surg. 2009, 11, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.F.; Yaakob, H.; Khalil, A.; Georges, P. Evaluating patients’ satisfaction level after using 3D printed PEEK facial implants in repairing maxillofacial deformities. Ann. Med. Surg. 2022, 6, 104095. [Google Scholar] [CrossRef] [PubMed]
- Vougioukas, V.I.; Hubbe, U.; Van Velthoven, V.; Freiman, T.M.; Schramm, A.; Spetzger, U. Neuronavigation-assisted cranial reconstruction. Neurosurgery 2004, 55, 162–167. [Google Scholar] [CrossRef]
- Scolozzi, P.; Martinez, A.; Jaques, B. Complex orbito-frontotemporal reconstruction using computer designed PEEK implant. J. Craniofac. Surg. 2007, 18, 224–228. [Google Scholar] [CrossRef]
- Ma, H.; Han, H.; Zhao, X.; Ma, J.; Qu, X.; Lou, X.; Suonan, A.; Lei, B.; Zhang, Y. Engineering Multifunctional Polyether Ether Ketone Implant: Mechanics-Adaptability, Biominerialization, Immunoregulation, Anti-Infection, Osteointegration, and Osteogenesis. Adv. Healthc. Mater. 2023, 12, e2202799. [Google Scholar] [CrossRef]
Patient No. | Age (y) | Gender | Cause of Defects | Timing | Site of Defects | No. of Implants | Complications | Other Corrections |
---|---|---|---|---|---|---|---|---|
1 | 28 | M | Trauma | II | Zygoma | 1 | No | No |
2 | 55 | M | Trauma | II | Frontal bone | 1 | No | No |
3 | 31 | F | Tumor § | II | Zygoma + Orbit | 1 | Infection | Scar correction |
4 | 50 | M | Trauma | II | Frontal + Zygoma | 2 | No | Lipofilling, blepharoplasty |
5 | 58 | M | Tumor + | I | Frontal+ Orbit | 1 | No | No |
6 | 50 | F | Tumor § | II | Zygoma | 1 | Infection | No |
7 | 57 | F | Tumor † | I | Frontal+ Orbit | 1 | No | No |
8 | 63 | M | Tumor § | II | Temporal + Zygoma | 2 | Dehiscence | No |
9 | 31 | M | Congenital | II | Mandibular Angle | 1 | No | Lipofilling |
10 | 26 | M | Trauma | II | Temporal | 1 | No | Lipofilling |
11 | 26 | M | Trauma | II | Parietotemporal | 1 | No | Scar correction |
12 | 59 | F | Tumor µ | I | Temporal + Orbit | 1 | No | No |
13 | 35 | F | Tumor § | II | Temporal + Zygoma | 2 | Seroma, dehiscence | Lipofilling |
14 | 58 | F | Tumor † | I | Frontal+ Orbit | 1 | No | No |
15 | 32 | F | Congenital | I | Cranium, frontal | 1 | No | No |
16 | 17 | M | Tumor ¶ | II | Temporal + Orbit | 2 | No | No |
17 | 68 | M | Tumor µ | I | Temporal + Orbit | 1 | No | No |
18 | 63 | F | Tumor µ | II | Temporal | 1 | Dehiscence | No |
19 | 19 | F | Tumor ¶ | II | Zygoma+ Mand. Angle | 2 | Seroma, infection | Lipofilling |
20 | 58 | F | Trauma | II | Frontotemporal | 1 | No | Lipofilling |
21 | 66 | F | Tumor µ | I | Temporal + Orbit | 1 | No | No |
22 | 45 | M | Tumor + | I | Frontal | 1 | No | No |
23 | 61 | F | Osteomyelitis | I | Frontotemporal | 1 | Seroma | No |
24 | 68 | F | Trauma | II | Frontotemporal | 1 | Seroma | No |
25 | 52 | F | Tumor µ | I | Temporal + Orbit | 1 | No | No |
26 | 53 | M | Trauma | II | Temporal | 1 | No | No |
27 | 41 | M | Trauma | II | Temporal | 1 | No | No |
28 | 49 | F | Trauma | II | Frontal | 1 | Seroma | No |
29 | 56 | M | Trauma | II | Temporal | 1 | Seroma | No |
30 | 28 | M | Trauma | II | Temporal | 1 | Seroma | No |
31 | 57 | F | Tumor µ | I | Temporal + Orbit | 1 | Seroma | No |
32 | 23 | F | Congenital | II | Mandible angle | 1 | No | No |
33 | 51 | M | Tumor § | II | Temporal bilateral | 2 | No | No |
34 | 29 | F | Trauma | II | Mandible body | 1 | No | Lipofilling |
35 | 45 | M | Trauma | II | Frontal | 1 | No | Blepharoplasty |
36 | 35 | F | Tumor ¶ | II | Temporal | 1 | No | No |
37 | 25 | M | Congenital | I | Mandible body | 2 | Seroma, dehiscence | No |
Variable | Total n (%); N = 37 | p Value * | Cranioplasty n (%); N = 24 | p Value * | Zygoma n (%); N = 8 | p Value * | Temporal n (%); N = 6 | p Value * | Mandible n (%); N = 6 | p Value * |
---|---|---|---|---|---|---|---|---|---|---|
Modified Katsuragy Scale—Patient | 0.01 | 0.1 | 0.8 | 0.09 | 0.03 | |||||
Preoperative | ||||||||||
Poor | 12 (32.4) | 9 (37.5) | 3 (37.5) | 0 | 1 (16.7) | |||||
Sufficient | 5 (13.5) | 2 (8.3) | 3 (37.5) | 2 (33.3) | 0 | |||||
Good | 20 (54.1) | 13 (54.2) | 2 (25) | 4 (66.7) | 5 (83.3) | |||||
Excellent | 0 | 0 | 0 | 0 | 0 | |||||
Postoperative | ||||||||||
Poor | 6 (16.2) | 4 (16.7) | 3 (37.5) | 0 | 0 | |||||
Sufficient | 5 (13.5) | 2 (8.3) | 2 (25) | 2 (33.3) | 1 (16.7) | |||||
Good | 17 (45.9) | 14 (58.3) | 3 (37.5) | 1 (16.7) | 1 (16.7) | |||||
Excellent | 9 (24.3) | 4 (16.7) | 0 | 3 50) | 4 (66.6) | |||||
Modified Katsuragy Scale—Surgeon | 0.002 | 0.02 | 0.2 | 0.5 | 0.02 | |||||
Preoperative | ||||||||||
Poor | 19 (51.4) | 11 (45.8) | 7 (87.5) | 2 (33.3) | 3 (50) | |||||
Sufficient | 6 (16.2) | 3 (12.5) | 1 (12.5) | 3 (50) | 1 (16.7) | |||||
Good | 12 (32.4) | 10 (41.7) | 0 | 1 (16.7) | 1 (16.7) | |||||
Excellent | 0 | 0 | 0 | 0 | 0 | |||||
Postoperative | ||||||||||
Poor | 6 (16.2) | 3 (12.5) | 4 (50) | 1 (16.7) | 0 | |||||
Sufficient | 9 (24.3) | 5 (20.8) | 3 (37.5) | 2 (33.3) | 2 (33.3) | |||||
Good | 15 (40.5) | 12 (50) | 1 (12.5) | 1 16.7) | 0 | |||||
Excellent | 7 (18.9) | 4 (16.7) | 0 | 2 (33.3) | 4 (66.7) | |||||
Mean ± DS | p Value ** | Mean ± DS | p Value ** | Mean ± DS | p Value ** | Mean ± DS | p Value ** | Mean ± DS | p Value ** | |
Preoperative VAS score | 2 ± 2.7 | 0.2 | 2.3 ± 3 | 0.5 | 1.1 ± 1.7 | 0.5 | 0.8 ± 1.4 | 0.9 | 1.5 ± 2 | 0.4 |
Postoperative VAS score | 1.3 ± 1.7 | 1.7 ± 1.9 | 0.5 ± 0.9 | 0.7 ± 1.1 | 0.3 ± 0.5 | |||||
FACEQ™ Satisfaction with outcome | 66.6 ± 18.2 | 68.9 ± 16.9 | 57 ± 23.5 | 58.3 ± 10.2 | 66.6 ± 13.4 | |||||
FACEQ™ Psychological function | 62.9 ± 16.7 | 65.3 ± 13.4 | 57.3 ± 29 | 47.7 ± 12.1 | 65.6 ± 9.9 | |||||
FACEQ™ Social function | 68.8 ± 19 | 75.7 ± 16.3 | 56.8 ± 25.3 | 48 ± 7.3 | 60 ± 4 | |||||
FACEQ™ Early life impact of treatment | 71.7 ± 15.2 | 69 ± 12 | 70 ± 18 | 72 ± 17.3 | 87 ± 15.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gugliotta, Y.; Zavattero, E.; Ramieri, G.; Borbon, C.; Gerbino, G. Cranio-Maxillo-Facial Reconstruction with Polyetheretherketone Patient-Specific Implants: Aesthetic and Functional Outcomes. J. Pers. Med. 2024, 14, 849. https://doi.org/10.3390/jpm14080849
Gugliotta Y, Zavattero E, Ramieri G, Borbon C, Gerbino G. Cranio-Maxillo-Facial Reconstruction with Polyetheretherketone Patient-Specific Implants: Aesthetic and Functional Outcomes. Journal of Personalized Medicine. 2024; 14(8):849. https://doi.org/10.3390/jpm14080849
Chicago/Turabian StyleGugliotta, Ylenia, Emanuele Zavattero, Guglielmo Ramieri, Claudia Borbon, and Giovanni Gerbino. 2024. "Cranio-Maxillo-Facial Reconstruction with Polyetheretherketone Patient-Specific Implants: Aesthetic and Functional Outcomes" Journal of Personalized Medicine 14, no. 8: 849. https://doi.org/10.3390/jpm14080849
APA StyleGugliotta, Y., Zavattero, E., Ramieri, G., Borbon, C., & Gerbino, G. (2024). Cranio-Maxillo-Facial Reconstruction with Polyetheretherketone Patient-Specific Implants: Aesthetic and Functional Outcomes. Journal of Personalized Medicine, 14(8), 849. https://doi.org/10.3390/jpm14080849