F10 Gene Expression and Ethnic Disparities Present in Papillary Thyroid Carcinoma
Abstract
1. Introduction
2. Materials and Methods
2.1. Gene Expression Data
2.2. Statistical Analysis
3. Results
3.1. Analysis of Gene Expression Differences in Disease-Free and Recurrent Papillary Thyroid Carcinoma
3.2. Ethnic Disparities in Gene Expression Profiles
3.3. Comparison of Overall Survival Curves
3.4. Comparison of Recurrence-Free Survival Curves
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Pizzato, M.; Li, M.; Vignat, J.; Laversanne, M.; Singh, D.; La Vecchia, C.; Vaccarella, S. The Epidemiological Landscape of Thyroid Cancer Worldwide: GLOBOCAN Estimates for Incidence and Mortality Rates in 2020. Lancet Diabetes Endocrinol. 2022, 10, 264–272. [Google Scholar] [CrossRef]
- Grant, C.S. Recurrence of Papillary Thyroid Cancer after Optimized Surgery. Gland. Surg. 2015, 4, 52–62. [Google Scholar] [PubMed]
- Papaleontiou, M.; Evron, J.M.; Esfandiari, N.H.; Reyes-Gastelum, D.; Ward, K.C.; Hamilton, A.S.; Worden, F.; Haymart, M.R. Patient Report of Recurrent and Persistent Thyroid Cancer. Thyroid 2020, 30, 1297–1305. [Google Scholar] [CrossRef]
- Bonner, A.; Herring, B.; Wang, R.; Gillis, A.; Zmijewski, P.; Lindeman, B.; Fazendin, J.; Chen, H. The Association of Socioeconomic Factors and Well-Differentiated Thyroid Cancer. J. Surg. Res. 2023, 283, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Wang, Z. Risk Factors Influencing the Recurrence of Papillary Thyroid Carcinoma: A Systematic Review and Meta-Analysis. Int. J. Clin. Exp. Pathol. 2014, 7, 5393–5403. [Google Scholar] [PubMed]
- Li, Y.; Tian, J.; Jiang, K.; Wang, Z.; Gao, S.; Wei, K.; Yang, A.; Li, Q. Risk Factors and Predictive Model for Recurrence in Papillary Thyroid Carcinoma: A Single-Center Retrospective Cohort Study Based on 955 Cases. Front. Endocrinol. 2023, 14, 1268282. [Google Scholar] [CrossRef]
- Ywata de Carvalho, A.; Kohler, H.F.; Gomes, C.C.; Vartanian, J.G.; Kowalski, L.P. Predictive Factors for Recurrence of Papillary Thyroid Carcinoma: Analysis of 4,085 Patients. Acta Otorhinolaryngol. Ital. 2021, 41, 236–242. [Google Scholar] [CrossRef]
- Mazzaferri, E.L.; Jhiang, S.M. Long-Term Impact of Initial Surgical and Medical Therapy on Papillary and Follicular Thyroid Cancer. Am. J. Med. 1994, 97, 418–428. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Li, J.; Chen, X. Total Thyroidectomy versus Lobectomy for Papillary Thyroid Cancer. Medicine 2020, 99, e19073. [Google Scholar] [CrossRef]
- Nieto, H.R.; Thornton, C.E.M.; Brookes, K.; Nobre de Menezes, A.; Fletcher, A.; Alshahrani, M.; Kocbiyik, M.; Sharma, N.; Boelaert, K.; Cazier, J.-B.; et al. Recurrence of Papillary Thyroid Cancer: A Systematic Appraisal of Risk Factors. J. Clin. Endocrinol. Metab. 2021, 107, 1392–1406. [Google Scholar] [CrossRef] [PubMed]
- Galmiche, A.; Rak, J.; Roumenina, L.T.; Saidak, Z. Coagulome and the Tumor Microenvironment: An Actionable Interplay. Trends Cancer 2022, 8, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Tekin, C.; Shi, K.; Daalhuisen, J.B.; ten Brink, M.S.; Bijlsma, M.F.; Spek, C.A. PAR1 Signaling on Tumor Cells Limits Tumor Growth by Maintaining a Mesenchymal Phenotype in Pancreatic Cancer. Oncotarget 2018, 9, 32010–32023. [Google Scholar] [CrossRef] [PubMed]
- Flynn, A.N.; Buret, A.G. Proteinase-Activated Receptor 1 (PAR-1) and Cell Apoptosis. Apoptosis 2004, 9, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Arce, M.; Pinto, M.P.; Galleguillos, M.; Muñoz, C.; Lange, S.; Ramirez, C.; Erices, R.; Gonzalez, P.; Velasquez, E.; Tempio, F.; et al. Coagulation Factor Xa Promotes Solid Tumor Growth, Experimental Metastasis and Endothelial Cell Activation. Cancers 2019, 11, 1103. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.-K.; Gan, X.-X.; Deng, X.-Y.; Shen, F.; Feng, J.-H.; Cai, W.-S.; Liu, Q.-Y.; Miao, J.-H.; Zheng, B.-X.; Xu, B. Potential Five-mRNA Signature Model for the Prediction of Prognosis in Patients with Papillary Thyroid Carcinoma. Oncol. Lett. 2020, 20, 2302–2310. [Google Scholar] [CrossRef] [PubMed]
- Sierko, E.; Wojtukiewicz, M.Z.; Zimnoch, L.; Tokajuk, P.; Ostrowska-Cichocka, K.; Kisiel, W. Co-Localization of Protein Z, Protein Z-Dependent Protease Inhibitor and Coagulation Factor X in Human Colon Cancer Tissue: Implications for Coagulation Regulation on Tumor Cells. Thromb. Res. 2012, 129, e112–e118. [Google Scholar] [CrossRef]
- Borensztajn, K.; Bijlsma, M.F.; Reitsma, P.H.; Peppelenbosch, M.P.; Spek, C.A. Coagulation Factor Xa Inhibits Cancer Cell Migration via Protease-Activated Receptor-1 Activation. Thromb. Res. 2009, 124, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal 2013, 6, p11. [Google Scholar] [CrossRef]
- Serrano-Gomez, S.J.; Sanabria-Salas, M.C.; Fejerman, L. Breast Cancer Health Disparities in Hispanics/Latinas. Curr. Breast Cancer Rep. 2020, 12, 175–184. [Google Scholar] [CrossRef]
- Miller, K.D.; Ortiz, A.P.; Pinheiro, P.S.; Bandi, P.; Minihan, A.; Fuchs, H.E.; Martinez Tyson, D.; Tortolero-Luna, G.; Fedewa, S.A.; Jemal, A.M.; et al. Cancer Statistics for the US Hispanic/Latino Population, 2021. CA Cancer J. Clin. 2021, 71, 466–487. [Google Scholar] [CrossRef] [PubMed]
- Adams, G.N.; Sharma, B.K.; Rosenfeldt, L.; Frederick, M.; Flick, M.J.; Witte, D.P.; Mosnier, L.O.; Harmel-Laws, E.; Steinbrecher, K.A.; Palumbo, J.S. Protease-Activated Receptor-1 Impedes Prostate and Intestinal Tumor Progression in Mice. J. Thromb. Haemost. 2018, 16, 2258–2269. [Google Scholar] [CrossRef] [PubMed]
- Aqbi, H.F.; Tyutyunyk-Massey, L.; Keim, R.C.; Butler, S.E.; Thekkudan, T.; Joshi, S.; Smith, T.M.; Bandyopadhyay, D.; Idowu, M.O.; Bear, H.D.; et al. Autophagy-Deficient Breast Cancer Shows Early Tumor Recurrence and Escape from Dormancy. Oncotarget 2018, 9, 22113–22122. [Google Scholar] [CrossRef]
- Lange, S.; Gonzalez, I.; Pinto, M.P.; Arce, M.; Valenzuela, R.; Aranda, E.; Elliot, M.; Alvarez, M.; Henriquez, S.; Velasquez, E.V.; et al. Independent Anti-Angiogenic Capacities of Coagulation Factors X and Xa. J. Cell. Physiol. 2014, 229, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Frank, R.E.; Saclarides, T.J.; Leurgans, S.; Speziale, N.J.; Drab, E.A.; Rubin, D.B. Tumor Angiogenesis as a Predictor of Recurrence and Survival in Patients with Node-Negative Colon Cancer. Ann. Surg. 1995, 222, 695–699. [Google Scholar] [CrossRef]
- Agrawal, U.; Mishra, A.K.; Salgia, P.; Verma, S.; Mohanty, N.K.; Saxena, S. Role of Tumor Suppressor and Angiogenesis Markers in Prediction of Recurrence of Non Muscle Invasive Bladder Cancer. Pathol. Oncol. Res. 2011, 17, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.-X.; Yang, F.; Yang, Y.; Tao, Q.-F.; Zhang, J.; Huang, G.; Yang, Y.; Wang, R.-Y.; Yang, S.; Huo, X.-S.; et al. Long Noncoding RNA Associated with Microvascular Invasion in Hepatocellular Carcinoma Promotes Angiogenesis and Serves as a Predictor for Hepatocellular Carcinoma Patients’ Poor Recurrence-Free Survival after Hepatectomy. Hepatology 2012, 56, 2231–2241. [Google Scholar] [CrossRef]
- Gacche, R.N. Compensatory Angiogenesis and Tumor Refractoriness. Oncogenesis 2015, 4, e153. [Google Scholar] [CrossRef]
- Majidpoor, J.; Mortezaee, K. Angiogenesis as a Hallmark of Solid Tumors—Clinical Perspectives. Cell. Oncol. 2021, 44, 715–737. [Google Scholar] [CrossRef]
- Folkman, J. Role of Angiogenesis in Tumor Growth and Metastasis. Semin. Oncol. 2002, 29 (Suppl. 16), 15–18. [Google Scholar] [CrossRef] [PubMed]
- Esnaola, N.F.; Ford, M.E. Racial Differences and Disparities in Cancer Care and Outcomes: Where’s the Rub? Surg. Oncol. Clin. N. Am. 2012, 21, 417–437. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porter, T.; Kucheryavykh, L. F10 Gene Expression and Ethnic Disparities Present in Papillary Thyroid Carcinoma. J. Pers. Med. 2024, 14, 524. https://doi.org/10.3390/jpm14050524
Porter T, Kucheryavykh L. F10 Gene Expression and Ethnic Disparities Present in Papillary Thyroid Carcinoma. Journal of Personalized Medicine. 2024; 14(5):524. https://doi.org/10.3390/jpm14050524
Chicago/Turabian StylePorter, Tyrel, and Lilia Kucheryavykh. 2024. "F10 Gene Expression and Ethnic Disparities Present in Papillary Thyroid Carcinoma" Journal of Personalized Medicine 14, no. 5: 524. https://doi.org/10.3390/jpm14050524
APA StylePorter, T., & Kucheryavykh, L. (2024). F10 Gene Expression and Ethnic Disparities Present in Papillary Thyroid Carcinoma. Journal of Personalized Medicine, 14(5), 524. https://doi.org/10.3390/jpm14050524