Correlation between Kidney Uptake at [18F]FDG PET/CT and Renal Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Selection
2.2. [18F]FDG PET/CT Acquisition and Interpretation Protocol
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ammirati, A.L. Chronic Kidney Disease. Rev. Assoc. Med. Bras. 2020, 66 (Suppl. S1), s03–s09. [Google Scholar] [CrossRef]
- Charles, C.; Ferris, A.H. Chronic Kidney Disease. Prim. Care 2020, 47, 585–595. [Google Scholar] [CrossRef]
- Inker, L.A.; Titan, S. Measurement and Estimation of GFR for Use in Clinical Practice: Core Curriculum 2021. Am. J. Kidney Dis. 2021, 78, 736–749. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020, 98, S1–S115. [CrossRef]
- Casali, M.; Lauri, C.; Altini, C.; Bertagna, F.; Cassarino, G.; Cistaro, A.; Erba, A.P.; Ferrari, C.; Mainolfi, C.G.; Palucci, A.; et al. State of the art of 18F-FDG PET/CT application in inflammation and infection: A guide for image acquisition and interpretation. Clin. Transl. Imaging 2021, 9, 299–339. [Google Scholar] [CrossRef]
- Altini, C.; Lavelli, V.; Ruta, R.; Ferrari, C.; Nappi, A.G.; Pisani, A.; Sardaro, A.; Rubini, G. Typical and atypical PET/CT findings in non-cancerous conditions. Hell. J. Nucl. Med. 2020, 23, 48–59. [Google Scholar] [CrossRef]
- Dondi, F.; Albano, D.; Bellini, P.; Volpi, G.; Giubbini, R.; Bertagna, F. 18F-fluorodeoxyglucose PET and PET/computed tomography for the evaluation of immunoglobulin G4-related disease: A systematic review. Nucl. Med. Commun. 2022, 43, 638–645. [Google Scholar] [CrossRef]
- Moran, J.K.; Lee, H.B.; Blaufox, M.D. Optimization of urinary FDG excretion during PET imaging. J. Nucl. Med. 1999, 40, 1352–1357. [Google Scholar]
- Rebelos, E.; Mari, A.; Oikonen, V.; Iida, H.; Nuutila, P.; Ferrannini, E. Evaluation of renal glucose uptake with [18F]FDG-PET: Methodological advancements and metabolic outcomes. Metabolism 2023, 141, 155382. [Google Scholar] [CrossRef]
- Laffon, E.; Cazeau, A.L.; Monet, A.; de Clermont, H.; Fernandez, P.; Marthan, R.; Ducassou, D. The effect of renal failure on 18F-FDG uptake: A theoretic assessment. J. Nucl. Med. Technol. 2008, 36, 200–202. [Google Scholar] [CrossRef]
- Reuter, S.; Schnöckel, U.; Edemir, B.; Schröter, R.; Kentrup, D.; Pavenstädt, H.; Schober, O.; Schlatter, E.; Gabriëls, G.; Schäfers, M. Potential of noninvasive serial assessment of acute renal allograft rejection by 18F-FDG PET to monitor treatment efficiency. J. Nucl. Med. 2010, 51, 1644–1652. [Google Scholar] [CrossRef] [PubMed]
- Kidera, E.; Koyasu, S.; Hayakawa, N.; Ishimori, T.; Nakamoto, Y. Association between diffuse renal uptake of 18F-FDG and acute kidney injury. Ann. Nucl. Med. 2022, 36, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Lovinfosse, P.; Weekers, L.; Bonvoisin, C.; Bovy, C.; Grosch, S.; Krzesinski, J.M.; Hustinx, R.; Jouret, F. Fluorodeoxyglucose F(18) Positron Emission Tomography Coupled With Computed Tomography in Suspected Acute Renal Allograft Rejection. Am. J. Transplant. 2016, 6, 310–316. [Google Scholar] [CrossRef]
- Hanssen, O.; Weekers, L.; Lovinfosse, P.; Jadoul, A.; Bonvoisin, C.; Bouquegneau, A.; Grosch, S.; Huynen, A.; Anglicheau, D.; Hustinx, R.; et al. Diagnostic yield of 18 F-FDG PET/CT imaging and urinary CXCL9/creatinine levels in kidney allograft subclinical rejection. Am. J. Transplant. 2020, 20, 1402–1409. [Google Scholar] [CrossRef] [PubMed]
- Geist, B.K.; Baltzer, P.; Fueger, B.; Hamboeck, M.; Nakuz, T.; Papp, L.; Rasul, S.; Sundar, L.K.S.; Hacker, M.; Staudenherz, A. Assessing the kidney function parameters glomerular filtration rate and effective renal plasma flow with dynamic FDG-PET/MRI in healthy subjects. EJNMMI Res. 2018, 8, 37. [Google Scholar] [CrossRef] [PubMed]
- Fink, J.C.; Lodge, M.A.; Smith, M.F.; Hinduja, A.; Brown, J.; Dinits-Pensy, M.Y.; Dilsizian, V. Pre-clinical myocardial metabolic alterations in chronic kidney disease. Cardiology 2010, 116, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Bural, G.G.; Torigian, D.A.; Sözmen, M.; Houseni, M.; Alavi, A. Comparison of atherosclerotic inflammation and calcification in subjects with end stage renal disease (ESRD) on hemodialysis to normal controls utilizing 18F-FDG PET/CT. Hell. J. Nucl. Med. 2018, 21, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.E.; Kim, Y.; Kim, S.D.; Oh, J.K.; Chung, Y.A.; Shin, S.J.; Yang, C.W.; Seo, S.M. A Pilot Trial to Examine the Changes in Carotid Arterial Inflammation in Renal Transplant Recipients as Assessed by 18F-Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography Computed Tomography (PET/CT). Ann. Transplant. 2018, 23, 412–421. [Google Scholar] [CrossRef]
- Lawal, I.O.; Popoola, G.O.; Lengana, T.; Ankrah, A.O.; Ebenhan, T.; Sathekge, M.M. Diagnostic utility of 18F-FDG PET/CT in fever of unknown origin among patients with end-stage renal disease treated with renal replacement therapy. Hell. J. Nucl. Med. 2019, 22, 70–75. [Google Scholar] [CrossRef]
- Tek Chand, K.; Chennu, K.K.; Amancharla Yadagiri, L.; Manthri Gupta, R.; Rapur, R.; Vishnubotla, S.K. Utility of 18 F-FDG PET/CT scan to diagnose the etiology of fever of unknown origin in patients on dialysis. Hemodial. Int. 2017, 21, 224–231. [Google Scholar] [CrossRef]
- Tseng, J.R.; Lin, C.W.; Chen, S.H.; Yen, T.H.; Lin, P.Y.; Lee, M.H.; Yen, T.C. Clinical Usefulness of ¹⁸F-FDG PET/CT for the Detection of Infections of Unknown Origin in Patients Undergoing Maintenance Hemodialysis. J. Nucl. Med. 2015, 56, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Pijl, J.P.; Glaudemans, A.W.J.M.; Slart, R.H.J.A.; Kwee, T.C. 18F-FDG PET/CT in Autosomal Dominant Polycystic Kidney Disease Patients with Suspected Cyst Infection. J. Nucl. Med. 2018, 59, 1734–1741. [Google Scholar] [CrossRef] [PubMed]
- Akers, S.R.; Werner, T.J.; Rubello, D.; Alavi, A.; Cheng, G. 18F-FDG uptake and clearance in patients with compromised renal function. Nucl. Med. Commun. 2016, 37, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Otomi, Y.; Arai, Y.; Otomo, M.; Irahara, S.; Terazawa, K.; Kubo, M.; Abe, T.; Shinya, T.; Otsuka, H.; Harada, M. Increased physiological [18F]FDG uptake in the liver and blood pool among patients with impaired renal function. Nucl. Med. Rev. Cent. East. Eur. 2022, 25, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Toriihara, A.; Kitazume, Y.; Nishida, H.; Kubota, K.; Nakadate, M.; Tateishi, U. Comparison of FDG-PET/CT images between chronic renal failure patients on hemodialysis and controls. Am. J. Nucl. Med. Mol. Imaging 2015, 5, 204–211. [Google Scholar] [PubMed]
- Kode, V.; Karsch, H.; Osman, M.M.; Muzaffar, R. Impact of Renal Failure on F18-FDG PET/CT Scans. Front. Oncol. 2017, 21, 155. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Bai, J.; Chen, Y.; Tian, J. Kidney modelling for FDG excretion with PET. Int. J. Biomed. Imaging 2007, 2007, 63234. [Google Scholar] [CrossRef] [PubMed]
- Jadoul, A.; Lovinfosse, P.; Weekers, L.; Delanaye, P.; Krzesinski, J.M.; Hustinx, R.; Jouret, F. The Uptake of 18F-FDG by Renal Allograft in Kidney Transplant Recipients Is Not Influenced by Renal Function. Clin. Nucl. Med. 2016, 41, 683–687. [Google Scholar] [CrossRef]
- Engel, H.; Steinert, H.; Buck, A.; Berthold, T.; Huch Böni, R.A.; von Schulthess, G.K. Whole-body PET: Physiological and artifactual fluorodeoxyglucose accumulations. J. Nucl. Med. 1996, 37, 441–446. [Google Scholar]
- Jadoul, A.; Lovinfosse, P.; Bouquegneau, A.; Weekers, L.; Pottel, H.; Hustinx, R.; Jouret, F. Observer variability in the assessment of renal 18F-FDG uptake in kidney transplant recipients. Sci. Rep. 2020, 10, 4617. [Google Scholar] [CrossRef]
Characteristics | Number (%) |
---|---|
Age (mean ± SD, range) | 65 ± 14, 18–92 |
Gender | |
Male | 190 (56.0%) |
Female | 149 (44.0%) |
Kidneys Status | |
Functional monokidney | 17 (5.0%) |
Two functioning kidneys | 303 (89.4%) |
Transplanted | 19 (5.6%) |
Only transplanted kidney uptake | 17 (5.0%) |
Uptake on transplanted and native kidneys | 2 (0.6%) |
Cr (mg/dL) (mean ± SD, range) | 2.1 ± 2.35, 0.36–11.1 |
Cr at the time of PET/CT | |
<1.2 mg/dL | 231 (60.0%) |
≥1.2 mg/dL | 154 (40.0%) |
EGFR (mL/min/1.73m2) (mean ± SD, range) | 63.8 ± 38.5, 4.2–139.7 |
EGFR at the time of PET/CT | |
≥60 mL/min/1.73 m2 | 226 (58.7%) |
<60 mL/min/1.73 m2 | 159 (41.3%) |
CKD stage | |
1 | 133 (39.2%) |
2 | 85 (25.1%) |
3 | 33 (9.7%) |
4 | 27 (8.0%) |
5 | 61 (18.0%) |
p-Value | Rho | |
---|---|---|
All patients (n = 339) | ||
Cr-K | <0.001 | −0.33 |
Cr-KL | <0.001 | −0.34 |
Cr-KBP | <0.001 | −0.38 |
EGFR-K | <0.001 | 0.32 |
EGFR-KL | <0.001 | 0.35 |
EGFR-KBP | <0.001 | 0.42 |
dCr-dK | <0.001 | −0.50 |
dCr-dKL | 0.005 | −0.41 |
dCr-dKBP | 0.005 | −0.42 |
dEGFR-dK | <0.001 | −0.54 |
dEGFR-dKL | <0.001 | −0.61 |
dEGFR-dKBP | <0.001 | −0.59 |
Non-transplanted patients (n = 320) | ||
Cr-K | <0.001 | −0.33 |
Cr-KL | <0.001 | −0.34 |
Cr-KBP | <0.001 | −0.39 |
EGFR-K | <0.001 | 0.34 |
EGFR-KL | <0.001 | 0.38 |
EGFR-KBP | <0.001 | 0.45 |
dCr-dK | <0.001 | −0.53 |
dCr-dKL | 0.005 | −0.46 |
dCr-dKBP | <0.001 | −0.54 |
dEGFR-dK | <0.001 | −0.56 |
dEGFR-dKL | <0.001 | −0.65 |
dEGFR-dKBP | <0.001 | −0.72 |
Transplanted patients (n = 19) | ||
Cr-K | 0.095 | −0.32 |
Cr-KL | 0.111 | −0.31 |
Cr-KBP | 0.114 | −0.31 |
EGFR-K | 0.867 | −0.03 |
EGFR-KL | 0.863 | 0.03 |
EGFR-KBP | 0.562 | 0.12 |
dCr-dK | 0.528 | −0.26 |
dCr-dKL | 0.926 | 0.04 |
dCr-dKBP | 0.944 | −0.03 |
dEGFR-dK | 0.211 | −0.49 |
dEGFR-dKL | 0.391 | −0.35 |
dEGFR-dKBP | 0.541 | −0.25 |
Cr < 1.2 mg/dL (n = 231) | ||
Cr-K | 0.199 | −0.80 |
Cr-KL | 0.119 | −0.10 |
Cr-KBP | 0.110 | −0.10 |
EGFR-K | 0.635 | 0.03 |
EGFR-KL | 0.234 | 0.06 |
EGFR-KBP | 0.128 | 0.10 |
dCr-dK | 0.793 | 0.16 |
dCr-dKL | 0.663 | −0.26 |
dCr-dKBP | 0.879 | 0.09 |
dEGFR-dK | 0.638 | 0.28 |
dEGFR-dKL | 0.981 | −0.01 |
dEGFR-dKBP | 0.731 | −0.21 |
Cr ≥ 1.2 mg/dL (n = 154) | ||
Cr-K | <0.001 | −0.46 |
Cr-KL | <0.001 | −0.49 |
Cr-KBP | <0.001 | −0.47 |
EGFR-K | <0.001 | 0.56 |
EGFR-KL | <0.001 | 0.54 |
EGFR-KBP | <0.001 | 0.56 |
dCr-dK | <0.001 | −0.55 |
dCr-dKL | 0.007 | −0.43 |
dCr-dKBP | 0.006 | −0.44 |
dEGFR-dK | <0.001 | −0.59 |
dEGFR-dKL | <0.001 | −0.64 |
dEGFR-dKBP | <0.001 | −0.60 |
EGFR ≥ 60(mL/min/1.73 m2) (n = 226) | ||
Cr-K | <0.001 | −0.33 |
Cr-KL | <0.001 | −0.34 |
Cr-KBP | <0.001 | −0.38 |
EGFR-K | <0.001 | 0.32 |
EGFR-KL | <0.001 | 0.46 |
EGFR-KBP | <0.001 | 0.42 |
dCr-dK | <0.001 | −0.50 |
dCr-dKL | 0.005 | −0.41 |
dCr-dKBP | 0.005 | −0.42 |
dEGFR-dK | <0.001 | −0.54 |
dEGFR-dKL | <0.001 | −0.61 |
dEGFR-dKBP | <0.001 | −0.59 |
EGFR < 60(mL/min/1.73 m2)(n = 159) | ||
Cr-K | <0.001 | −0.44 |
Cr-KL | <0.001 | −0.49 |
Cr-KBP | <0.001 | −0.46 |
EGFR-K | <0.001 | 0.51 |
EGFR-KL | <0.001 | 0.53 |
EGFR-KBP | <0.001 | 0.56 |
dCr-dK | <0.001 | −0.55 |
dCr-dKL | 0.007 | −0.42 |
dCr-dKBP | 0.006 | −0.44 |
dEGFR-dK | <0.001 | −0.59 |
dEGFR-dKL | <0.001 | −0.64 |
dEGFR-dKBP | <0.001 | −0.60 |
K | p-Value | KL | p-Value | KBP | p-Value | |
---|---|---|---|---|---|---|
All patients (n = 339) | ||||||
Cr | <0.001 | <0.001 | <0.001 | |||
<1.2 mg/dL (n = 231) | 4.63 | 1.78 | 2.36 | |||
≥1.2 mg/dL (n = 154) | 3.35 | 1.13 | 1.44 | |||
EGFR | <0.001 | <0.001 | <0.001 | |||
≥60 (mL/min/1.73 m2) (n = 226) | 4.66 | 1.79 | 2.38 | |||
<60 (mL/min/1.73 m2) (n = 159) | 3.33 | 1.14 | 1.44 | |||
Non-transplanted patients (n = 320) | ||||||
Cr | <0.001 | <0.001 | <0.001 | |||
<1.2 mg/dL ( n = 231) | 4.66 | 1.79 | 2.37 | |||
≥1.2 mg/dL (n = 154) | 3.16 | 1.03 | 1.32 | |||
EGFR | <0.001 | <0.001 | <0.001 | |||
≥60 (mL/min/1.73 m2) ( n = 226) | 4.69 | 1.79 | 2.39 | |||
<60 (mL/min/1.73 m2) (n = 159) | 3.15 | 1.04 | 1.32 | |||
EGFR ( n = 339) | <0.001 | <0.001 | <0.001 | |||
≥90 (mL/min/1.73 m2) ( n = 133) | 4.76 | 1.85 | 2.49 | |||
60–89 (mL/min/1.73 m2) ( n = 85) | 4.51 | 1.68 | 2.21 | |||
30–59 (mL/min/1.73 m2) ( n = 33) | 4.36 | 1.46 | 1.90 | |||
15–29 (mL/min/1.73 m2) ( n = 27) | 3.14 | 1.16 | 1.41 | |||
<15 (mL/min/1.73 m2) ( n = 61)) | 2.69 | 0.91 | 1.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dondi, F.; Pisani, A.R.; Lucarelli, N.M.; Gazzilli, M.; Talin, A.; Albano, D.; Rubini, D.; Maggialetti, N.; Rubini, G.; Bertagna, F. Correlation between Kidney Uptake at [18F]FDG PET/CT and Renal Function. J. Pers. Med. 2024, 14, 40. https://doi.org/10.3390/jpm14010040
Dondi F, Pisani AR, Lucarelli NM, Gazzilli M, Talin A, Albano D, Rubini D, Maggialetti N, Rubini G, Bertagna F. Correlation between Kidney Uptake at [18F]FDG PET/CT and Renal Function. Journal of Personalized Medicine. 2024; 14(1):40. https://doi.org/10.3390/jpm14010040
Chicago/Turabian StyleDondi, Francesco, Antonio Rosario Pisani, Nicola Maria Lucarelli, Maria Gazzilli, Anna Talin, Domenico Albano, Dino Rubini, Nicola Maggialetti, Giuseppe Rubini, and Francesco Bertagna. 2024. "Correlation between Kidney Uptake at [18F]FDG PET/CT and Renal Function" Journal of Personalized Medicine 14, no. 1: 40. https://doi.org/10.3390/jpm14010040
APA StyleDondi, F., Pisani, A. R., Lucarelli, N. M., Gazzilli, M., Talin, A., Albano, D., Rubini, D., Maggialetti, N., Rubini, G., & Bertagna, F. (2024). Correlation between Kidney Uptake at [18F]FDG PET/CT and Renal Function. Journal of Personalized Medicine, 14(1), 40. https://doi.org/10.3390/jpm14010040