Complications of Robotic Video-Assisted Thoracoscopic Surgery Compared to Open Thoracotomy for Resectable Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Selection Criteria and Data Extraction
2.3. Statistical Analysis
3. Results
3.1. Quantity of Studies
3.2. Quality of Studies
3.3. Patient Characteristics
3.4. Intra-Operative Outcomes and Surgical Approach
3.5. Post-Operative Morbidity and Mortality Outcomes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, C.; Manganas, C.; Ang, S.C.; Yan, T.D. A systematic review and meta-analysis on pulmonary resections by robotic video-assisted thoracic surgery. Ann. Cardiothorac. Surg. 2012, 1, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Kodia, K.; Razi, S.S.; Alnajar, A.; Nguyen, D.M.; Villamizar, N. Comparative Analysis of Robotic Segmentectomy for Non-Small Cell Lung Cancer: A National Cancer Database Study. Innovations 2021, 16, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Aiolfi, A.; Nosotti, M.; Micheletto, G.; Khor, D.; Bonitta, G.; Perali, C.; Marin, J.; Biraghi, T.; Bona, D. Pulmonary lobectomy for cancer: Systematic review and network meta-analysis comparing open, video-assisted thoracic surgery, and robotic approach. Surgery 2021, 169, 436–446. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, K.E.; Kreaden, U.S.; Hebert, A.E.; Eaton, D.; Redmond, K.C. A systematic review and meta-analysis of robotic versus open and video-assisted thoracoscopic surgery approaches for lobectomy. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gao, S. Robot-assisted thoracic surgery versus open thoracic surgery for lung cancer: A system review and meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 17804–17810. [Google Scholar] [PubMed]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef]
- Kneuertz, P.J.; Abdel-Rasoul, M.; D’Souza, D.M.; Zhao, J.; Merritt, R.E. Segmentectomy for clinical stage I non-small cell lung cancer: National benchmarks for nodal staging and outcomes by operative approach. Cancer 2022, 128, 1483–1492. [Google Scholar] [CrossRef]
- Nawalaniec, J.T.; Elson, M.; Reznik, S.I.; Wait, M.A.; Peltz, M.; Jessen, M.E.; Madrigales, A.; Lysikowski, J.; Kernstine, K.H. Training Cardiothoracic Residents in Robotic Lobectomy Is Cost-Effective with No Change in Clinical Outcomes. Innovations 2022, 17, 15569845221086278. [Google Scholar] [CrossRef]
- Zhou, N.; Corsini, E.M.; Antonoff, M.B.; Hofstetter, W.L.; Mehran, R.J.; Rajaram, R.; Roth, J.A.; Sepesi, B.; Swisher, S.G.; Vaporciyan, A.A.; et al. Robotic Surgery and Anatomic Segmentectomy: An Analysis of Trends, Patient Selection, and Outcomes. Ann. Thorac. Surg. 2022, 113, 975–983. [Google Scholar] [CrossRef]
- Kent, M.S.; Hartwig, M.G.; Vallières, E.; Abbas, A.E.; Cerfolio, R.J.; Dylewski, M.R.; Fabian, T.; Herrera, L.J.; Jett, K.G.; Lazzaro, R.S.; et al. Pulmonary Open, Robotic and Thoracoscopic Lobectomy (PORTaL) Study: An Analysis of 5721 Cases. Ann. Surg. 2021, 2021. [Google Scholar] [CrossRef]
- Huang, J.; Tian, Y.; Li, C.; Shen, Y.; Li, H.; Lv, F.; Lin, H.; Lu, P.; Lin, J.; Lau, C.; et al. Robotic-assisted thoracic surgery reduces perioperative complications and achieves a similar long-term survival profile as posterolateral thoracotomy in clinical N2 stage non-small cell lung cancer patients: A multicenter, randomized, controlled trial. Transl. Lung Cancer Res. 2021, 10, 4281–4292. [Google Scholar] [CrossRef] [PubMed]
- Qiu, T.; Zhao, Y.; Xuan, Y.; Qin, Y.; Niu, Z.; Shen, Y.; Jiao, W. Robotic sleeve lobectomy for centrally located non-small cell lung cancer: A propensity score-weighted comparison with thoracoscopic and open surgery. J. Thorac. Cardiovasc. Surg. 2020, 160, 838–846.e2. [Google Scholar] [CrossRef] [PubMed]
- Kneuertz, P.J.; Singer, E.; D’Souza, D.M.; Abdel-Rasoul, M.; Moffatt-Bruce, S.D.; Merritt, R.E. Hospital cost and clinical effectiveness of robotic-assisted versus video-assisted thoracoscopic and open lobectomy: A propensity score-weighted comparison. J. Thorac. Cardiovasc. Surg. 2019, 157, 2018–2026.e2. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, M.P.; Liu, J.; Chapman, W.C., Jr.; Olsen, M.A.; Yan, Y.; Liu, Y.; Semenkovich, T.R.; Meyers, B.F.; Puri, V.; Kozower, B.D. Utilization Trends, Outcomes, and Cost in Minimally Invasive Lobectomy. Ann. Thorac. Surg. 2019, 108, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.B.; Mehran, R.J.; Mitchell, K.G.; Rajaram, R.; Correa, A.M.; Bassett, R.L., Jr.; Antonoff, M.B.; Hofstetter, W.L.; Roth, J.A.; Sepesi, B.; et al. Robotic-Assisted Lobectomy for Non-Small Cell Lung Cancer: A Comprehensive Institutional Experience. Ann. Thorac. Surg. 2019, 108, 370–376. [Google Scholar] [CrossRef]
- Novellis, P.; Bottoni, E.; Voulaz, E.; Cariboni, U.; Testori, A.; Bertolaccini, L.; Giordano, L.; Dieci, E.; Granato, L.; Vanni, E.; et al. Robotic surgery, video-assisted thoracic surgery, and open surgery for early stage lung cancer: Comparison of costs and outcomes at a single institute. J. Thorac. Dis. 2018, 10, 790–798. [Google Scholar] [CrossRef]
- Gu, C.; Pan, X.; Chen, Y.; Yang, J.; Zhao, H.; Shi, J. Short-term and mid-term survival in bronchial sleeve resection by robotic system versus thoracotomy for centrally located lung cancer. Eur. J. Cardiothorac. Surg. 2018, 53, 648–655. [Google Scholar] [CrossRef]
- Gallagher, S.P.; Abolhoda, A.; Kirkpatrick, V.E.; Saffarzadeh, A.G.; Thein, M.S.; Wilson, S.E. Learning Curve of Robotic Lobectomy for Early-Stage Non-Small Cell Lung Cancer by a Thoracic Surgeon Adept in Open Lobectomy. Innovations 2018, 13, 321–327. [Google Scholar] [CrossRef]
- Oh, D.S.; Reddy, R.M.; Gorrepati, M.L.; Mehendale, S.; Reed, M.F. Robotic-Assisted, Video-Assisted Thoracoscopic and Open Lobectomy: Propensity-Matched Analysis of Recent Premier Data. Ann. Thorac. Surg. 2017, 104, 1733–1740. [Google Scholar] [CrossRef]
- Kwon, S.T.; Zhao, L.; Reddy, R.M.; Chang, A.C.; Orringer, M.B.; Brummett, C.M.; Lin, J. Evaluation of acute and chronic pain outcomes after robotic, video-assisted thoracoscopic surgery, or open anatomic pulmonary resection. J. Thorac. Cardiovasc. Surg. 2017, 154, 652–659.e1. [Google Scholar] [CrossRef]
- Yang, H.X.; Woo, K.M.; Sima, C.S.; Bains, M.S.; Adusumilli, P.S.; Huang, J.; Finley, D.J.; Rizk, N.P.; Rusch, V.W.; Jones, D.R.; et al. Long-term Survival Based on the Surgical Approach to Lobectomy for Clinical Stage I Nonsmall Cell Lung Cancer: Comparison of Robotic, Video-assisted Thoracic Surgery, and Thoracotomy Lobectomy. Ann. Surg. 2017, 265, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, R.; Mohanty, S.; Bentrem, D.J.; Pavey, E.S.; Odell, D.D.; Bharat, A.; Bilimoria, K.Y.; DeCamp, M.M. Nationwide Assessment of Robotic Lobectomy for Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2017, 103, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Farivar, A.S.; Cerfolio, R.J.; Vallières, E.; Knight, A.W.; Bryant, A.; Lingala, V.; Aye, R.W.; Louie, B.E. Comparing robotic lung resection with thoracotomy and video-assisted thoracoscopic surgery cases entered into the Society of Thoracic Surgeons database. Innovations 2014, 9, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Kent, M.; Wang, T.; Whyte, R.; Curran, T.; Flores, R.; Gangadharan, S. Open, video-assisted thoracic surgery, and robotic lobectomy: Review of a national database. Ann. Thorac. Surg. 2014, 97, 236–242; discussion 242–234. [Google Scholar] [CrossRef] [PubMed]
- Deen, S.A.; Wilson, J.L.; Wilshire, C.L.; Vallières, E.; Farivar, A.S.; Aye, R.W.; Ely, R.E.; Louie, B.E. Defining the cost of care for lobectomy and segmentectomy: A comparison of open, video-assisted thoracoscopic, and robotic approaches. Ann. Thorac. Surg. 2014, 97, 1000–1007. [Google Scholar] [CrossRef]
- Adams, R.D.; Bolton, W.D.; Stephenson, J.E.; Henry, G.; Robbins, E.T.; Sommers, E. Initial multicenter community robotic lobectomy experience: Comparisons to a national database. Ann. Thorac. Surg. 2014, 97, 1893–1898; discussion 1899–1900. [Google Scholar] [CrossRef]
- Cerfolio, R.J.; Bryant, A.S.; Skylizard, L.; Minnich, D.J. Initial consecutive experience of completely portal robotic pulmonary resection with 4 arms. J. Thorac. Cardiovasc. Surg. 2011, 142, 740–746. [Google Scholar] [CrossRef]
- Veronesi, G.; Galetta, D.; Maisonneuve, P.; Melfi, F.; Schmid, R.A.; Borri, A.; Vannucci, F.; Spaggiari, L. Four-arm robotic lobectomy for the treatment of early-stage lung cancer. J. Thorac. Cardiovasc. Surg. 2010, 140, 19–25. [Google Scholar] [CrossRef]
- Melfi, F.M.; Menconi, G.F.; Mariani, A.M.; Angeletti, C.A. Early experience with robotic technology for thoracoscopic surgery. Eur. J. Cardiothorac. Surg. 2002, 21, 864–868. [Google Scholar] [CrossRef]
- Kneuertz, P.J.; D’Souza, D.M.; Richardson, M.; Abdel-Rasoul, M.; Moffatt-Bruce, S.D.; Merritt, R.E. Long-Term Oncologic Outcomes After Robotic Lobectomy for Early-stage non-Small-cell Lung Cancer Versus Video-assisted Thoracoscopic and Open Thoracotomy Approach. Clin. Lung Cancer 2020, 21, 214–224. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.; Zhao, S.; Wang, J.; Zhang, W.; Sun, G. Robot-assisted thoracic surgery versus video-assisted thoracic surgery for lung lobectomy or segmentectomy in patients with non-small cell lung cancer: A meta-analysis. BMC Cancer 2021, 21, 498. [Google Scholar] [CrossRef] [PubMed]
- Gómez Hernández, M.T.; Fuentes Gago, M.; Novoa Valentín, N.; Rodríguez Alvarado, I.; Jiménez López, M.F. Robotic anatomical lung resections: Analysis of the learning curve. Cir. Esp. 2021, 99, 421–427. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Country | Period | Number of Participants RVATS Thoracotomy | Follow-Up Months (RVATS/Open) | |
---|---|---|---|---|---|---|
Kneuertz [7] | 2022 | USA | 2012–2017 | 634 | 562 | NR |
Nawalanie [8] | 2022 | USA | 2006–2016 | 211 | 210 | NR |
Zhou [9] | 2022 | USA | 2015–2019 | 77 | 105 | 25/25 |
Kent [10] | 2021 | USA | 2013–2019 | 885 | 885 | NR |
Huang [11] | 2021 | China | 2016–2020 | 76 | 72 | 24/24 |
Qiu [12] | 2020 | China | 2012–2017 | 49 | 66 | 21/24 |
Kneuertz [13] | 2019 | USA | 2012–2017 | 296 | 240 | NR |
Subramania [14] | 2019 | USA | 2008–2014 | 1929 | 8501 | NR |
Nelson [15] | 2019 | USA | 2011–2017 | 106 | 424 | 27/27 |
Novellis [16] | 2018 | Italy | 2015–2016 | 23 | 38 | NR |
Gu [17] | 2018 | China | 2014–2015 | 17 | 86 | 20/20 |
Gallagher [18] | 2018 | USA | 2007–2014 | 100 | 57 | NR |
Oh [19] | 2017 | USA | 2011–2015 | 2775 | 2775 | NR |
Kwon [20] | 2017 | USA | 2010–2014 | 74 | 201 | 24/28 |
Yang [21] | 2017 | China | 2002–2012 | 172 | 157 | NR |
Rajaram [22] | 2017 | USA | 2010–2012 | 3689 | 45,527 | NR |
Farivar [23] | 2014 | USA | 2010–2012 | 181 | 5913 | NR |
Kent [24] | 2014 | USA | 2008–2010 | 430 | 20,238 | NR |
Deen [25] | 2014 | USA | 2008–2012 | 57 | 69 | NR |
Adams [26] | 2014 | USA | 2010–2012 | 120 | 5913 | NR |
Cerfolio [27] | 2011 | USA | 2010–2011 | 106 | 318 | NR |
Vernoesi [28] | 2010 | Italy | 2006–2008 | 54 | 54 | NR |
Author | Age (Years) | Male (%) | BMI | FEV1 (%) | DLCO (%) | TNM Clinical Staging (%) (I/II/III+) | Histopathology (%) (ADC/SCC/Other) | Tumor Size (cm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RVATS | Open | RVATS | Open | RVATS | Open | RVATS | Open | RVATS | Open | RVATS | Open | RVATS | Open | RVATS | Open | |
Kneuertz [7] | 69 | 68 | 41 | 43 | 28 | 28 | 79 | 79 | 71 | 70 | 93/7/0 | 90/10/0 | 73/19/8 | 72/22/6 | NR | NR |
Nawalanie [8] | 65 | 62 | 46 | 52 | 27 | 26 | 86 | 78 | 83 | 73 | NR | NR | NR | NR | NR | NR |
Zhou [9] | 65 * | 59 * | 51 | 53 | 28 * | 29 * | 94 | 92 | 95 | 85 | NR | NR | NR | NR | 1.7 | 2.3 |
Kent [10] | 67 | 67 | 46 | 49 | 28 | 28 | 87 | 86 | NR | NR | 71/20/9 | 69/24/8 | 74/17/9 | 61/32/7 | 3.1 | 3.4 |
Huang [11] | 61 | 61 | 67 | 71 | NR | NR | 89 | 90 | 94 | 90 | 36/32/37 | 29/24/47 | NR | NR | 3.3 | 3.6 |
Qiu [12] | 61 | 61 | 89 | 91 | 24 | 24 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Kneuertz [13] | 64 * | 64 * | 57 | 50 | 28 * | 28 * | 81 * | 83 * | 77 * | 77 * | NR | NR | NR | NR | NR | NR |
Subramania [14] | 69 | 68 | 44 | 49 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Nelson [15] | 67 | 66 | 44 | 50 | NR | NR | 86 | 86 | NR | NR | 74/16/10 | 49/26/24 | 75/25/0 | 74/26/0 | 3 | 3.2 |
Novellis [16] | 70 * | 71 * | NR | NR | NR | NR | 90* | 90* | NR | NR | 52/26/22 | 69/17/14 | NR | NR | 2.1 * | 3 * |
Gu [17] | 62 | 61 | 100 | 93 | 23 | 24 | 75 | 81 | 84 | 85 | 35/30/35 | 42/34/24 | 0/76/18 | 11/72/13 | 3.5 | 3.6 |
Gallagher [18] | 68 * | 66 * | 98 | 96 | NR | NR | 76 * | 72 * | 73 * | 73 * | 84/16/0 | 72/28/0 | NR | NR | NR | NR |
Oh [19] | 67 | 67 | 47 | 47 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Kwon [20] | 67 * | 66 * | 38 | 56 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Yang [21] | 68 | 68 | 43 | 34 | NR | NR | 92 | 90 | 85 | 83 | 100/0/0 | 100/0/0 | 11/53/13 | 14/46/14 | NR | NR |
Rajaram [22] | 68 | 67 | 45 | 48 | NR | NR | NR | NR | NR | NR | NR | NR | 62/24/14 | 58/28/14 | NR | NR |
Farivar [23] | 65 | 65 | 42 | 50 | 28 | 28 | 84 | 80 | 74 | 74 | NR | NR | NR | NR | NR | NR |
Kent [24] | 67 | 66 | 44 | 49 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Deen [25] | 68 | 68 | 50 | 87 | NR | NR | 87 | 87 | 80 | 77 | 42/9/3 | 48/12/9 | NR | NR | 2.8 | 3.2 |
Adams [26] | 65 | 65 | 48 | 50 | 27 | 28 | 79 | 80 | 73 | 74 | NR | NR | NR | NR | NR | NR |
Cerfolio [27] | 66 * | 66 * | 48 | 47 | NR | NR | 84 | 85 | 76 | 80 | NR | NR | NR | NR | 3.7 * | 3.6 * |
Vernoesi [28] | NR | NR | 38 | 34 | NR | NR | 95 | 95 | NR | NR | 45/5/4 | 42/4/8 | NR | NR | NR | NR |
Author | Resection Type | Operation Time (Mins) | Lymph Nodes Harvested | Stations Harvested | Conversion to Open (%) | |||
---|---|---|---|---|---|---|---|---|
RVATS | Open | RVATS | Open | RVATS | Open | RVATS | ||
Kneuertz [7] | S | 239 | 227 | 10 | 8 | 5 | 4 | NR |
Nawalanie [8] | P, L, B, S | 150 * | 160 * | 23 | 13 | 5 | 3 | NR |
Zhou [9] | S | 205 | 147 | 14 | 10 | 6 | 4 | 0 |
Kent [10] | L | 166 | 164 | NR | NR | NR | NR | NR |
Huang [11] | L | 104 | 102 | NR | NR | NR | NR | NR |
Qiu [12] | B | 200 | 240 | 23 | 23 | NR | NR | 0 |
Kneuertz [13] | L | 287 * | 279 * | NR | NR | NR | NR | NR |
Subramania [14] | L | NR | NR | NR | NR | NR | NR | NR |
Nelson [15] | L | 226 * | 148 * | 17 * | 12 * | 6 | 5 | 8 |
Novellis [16] | L | 155 | 122 | NR | NR | 5 | 4 | 9 |
Gu [17] | B | 155 | 150 | NR | NR | NR | NR | 6 |
Gallagher [18] | L | 195 * | 175 * | NR | NR | 5 | 4 | NR |
Oh [19] | L | 276 | 235 | NR | NR | NR | NR | 7 |
Kwon [20] | L, S | 233 | 268 | NR | NR | NR | NR | 19 |
Yang [21] | L | NR | NR | NR | NR | NR | NR | 19 |
Rajaram [22] | L | NR | NR | NR | NR | NR | NR | NR |
Farivar [23] | L, S | 199 | 244 | NR | NR | NR | NR | NR |
Kent [24] | L | NR | NR | NR | NR | NR | NR | NR |
Deen [25] | L, S | 223 | 180 | NR | NR | NR | NR | NR |
Adams [26] | L | 242 | 176 | NR | NR | NR | NR | NR |
Cerfolio [27] | L | 132 | 90 | 17 | 15 | 8 | 8 | NR |
Vernoesi [28] | L | 235 * | 154 * | 17 | 18 | 4 | 7 | 9 |
Study | Mortality (%) | Overall Complications (%) | Length of Stay (Days) | Chest Drain Duration (Days) | Post-Operative Transfusion (%) | Pneumonia (%) | Prolonged Air Leak (%) | Atelectasis (%) | Atrial Arrhythmia (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RVATS | Open | RVATS | Open | RVATS | Open | RVATS | Open | RVATS | Open | RVATS | Open | RVATS | Open | RVATS | Open | RVATS | Open | |
Kneuertz [7] | 0.5 | 1.1 | 31 | 38 | 4 | 5 | NR | NR | 3 | 4 | 4 | 3.7 | 8.1 | 7 | 2.6 | 3 | 5.4 | 7.8 |
Nawalanie [8] | 3.3 | 1.6 | 33 | 52 | 3 | 5 | NR | NR | NR | NR | 7.6 | 11.9 | 7.6 | 20.3 | 6.1 | 13 | 14.7 | 18.6 |
Zhou [9] | 0 | 1 | 8 | 20 | 3 | 4 | 2 | 3 | 1 | 6 | NR | NR | 3.9 | 13.3 | NR | NR | 2.6 | 4.8 |
Kent [10] | 0.3 | 0.8 | 27 | 36 | 4 * | 6 * | 4 | 5 | 4 | 5 | NR | NR | NR | NR | NR | NR | NR | NR |
Huang [11] | NR | NR | NR | NR | 10 * | 11 * | 4 * | 5 * | 4 * | 5 * | 3.9 | 8.3 | 7.9 | 8.3 | NR | NR | 3.9 | 5.6 |
Qiu [12] | 0 | 0 | NR | NR | NR | NR | NR | NR | NR | NR | 5 | 4.6 | 6.8 | 3.1 | 5 | 5.9 | 4.4 | 4 |
Kneuertz [13] | 1 | 2 | 45 | 55 | 4 * | 5 * | NR | NR | NR | NR | 3 | 8 | 5 | 9 | 5 | 16 | 8 | 10 |
Subramania [14] | NR | NR | NR | NR | 4 * | 7 * | NR | NR | NR | NR | 5.2 | 10.1 | 8 | 3.8 | NR | NR | 18 | 22.2 |
Nelson [15] | NR | NR | NR | NR | 4 * | 5 * | NR | NR | NR | NR | 7 | 4 | 15 | 16 | NR | NR | NR | NR |
Novellis [16] | 4.4 | 2.6 | 35 | 53 | 4 * | 6 * | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Gu [17] | 6 | 2 | 24 | 26 | 11 | 10 | 9 | 7 | 9 | 7 | 12 | 9 | NR | NR | NR | NR | 12 | 5 |
Gallagher [18] | 0 | 1.8 | NR | NR | 6 * | 10 * | 3 * | 6 * | 3 * | 6 * | 12 | 14 | NR | NR | NR | NR | 20 | 21 |
Oh [19] | NR | NR | 35 | 43 | 7 | 9 | NR | NR | NR | NR | NR | NR | 10.1 | 9 | 12.4 | 15.7 | 10.9 | 13.6 |
Kwon [20] | 0 | 0.5 | NR | NR | 4 * | 6 * | 3 * | 4 * | 3 * | 4 * | NR | NR | 2.7 | 10 | NR | NR | NR | NR |
Yang [21] | 0 | 0 | NR | NR | 4 * | 5 * | NR | NR | NR | NR | 2.9 | 5 | 8.7 | 4.5 | 2.9 | 2.5 | 10.5 | 12.1 |
Rajaram [22] | 1.7 | 2.4 | NR | NR | 6 | 7 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Farivar [23] | 0 | 2 | NR | NR | 3 | 7 | 3 | 5 | 3 | 5 | 1.7 | 5.1 | 6.1 | 10.7 | 1.7 | 5.3 | 5.5 | 12.1 |
Kent [24] | NR | NR | 45 | 54 | 6 * | 8 * | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Deen [25] | NR | NR | 32 | 30 | 5 | 6 | NR | NR | NR | NR | NR | NR | 0 | 0 | NR | NR | NR | NR |
Adams [26] | 0 | 2.2 | NR | NR | 5 | 7 | 3 | 5 | 3 | 5 | 1.7 | 5.1 | 5.2 | 10.8 | NR | NR | 8.6 | 12.1 |
Cerfolio [27] | 0 | 3 | NR | NR | 2 * | 4 * | 2 * | 3 * | 2 * | 3 * | NR | NR | NR | NR | NR | NR | NR | NR |
Vernoesi [28] | NR | NR | 20 | 19 | 4 * | 6 * | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, O.; Alzul, R.; Carelli, M.; Melfi, F.; Tian, D.; Cao, C. Complications of Robotic Video-Assisted Thoracoscopic Surgery Compared to Open Thoracotomy for Resectable Non-Small Cell Lung Cancer. J. Pers. Med. 2022, 12, 1311. https://doi.org/10.3390/jpm12081311
Zhang O, Alzul R, Carelli M, Melfi F, Tian D, Cao C. Complications of Robotic Video-Assisted Thoracoscopic Surgery Compared to Open Thoracotomy for Resectable Non-Small Cell Lung Cancer. Journal of Personalized Medicine. 2022; 12(8):1311. https://doi.org/10.3390/jpm12081311
Chicago/Turabian StyleZhang, Oscar, Robert Alzul, Matheus Carelli, Franca Melfi, David Tian, and Christopher Cao. 2022. "Complications of Robotic Video-Assisted Thoracoscopic Surgery Compared to Open Thoracotomy for Resectable Non-Small Cell Lung Cancer" Journal of Personalized Medicine 12, no. 8: 1311. https://doi.org/10.3390/jpm12081311