Immunogenic Cell Death (ICD)-Related Gene Signature Could Predict the Prognosis of Patients with Diffuse Large B-Cell Lymphoma
Abstract
:1. Background
2. Materials and Methods
2.1. Collection of Data
2.2. Identification and Validation of ICD-Related Gene Signature
2.3. Relationship between Risk Score and Clinical Parameters
2.4. GSEA (Gene Set Enrichment Analysis)
2.5. Statistical Analysis
3. Results
3.1. DLBCL Patients’ Clinical Features
3.2. Construction and Verification of ICD-Related Gene Signature
3.3. Univariate and Multivariate Cox Regression Analysis of Potential Prognostic Factors
3.4. Higher CR Rate and Lower Recurrence Rate in Low-Risk Group
3.5. Gene Set Enrichment Analysis (GSEA)
3.6. A Nomogram Based on ICD-Related Gene Signature
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teras, L.R.; DeSantis, C.E.; Cerhan, J.R.; Morton, L.M.; Jemal, A.; Flowers, C.R. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J. Clin. 2016, 66, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Z.; Li, X.; Liu, R.; Chen, S.; Tu, J. Comprehensive Characterization of Cachexia-Inducing Factors in Diffuse Large B-Cell Lymphoma Reveals a Molecular Subtype and a Prognosis-Related Signature. Front. Cell Dev. Biol. 2021, 9, 648856. [Google Scholar] [CrossRef] [PubMed]
- Crump, M.; Neelapu, S.S.; Farooq, U.; Van Den Neste, E.; Kuruvilla, J.; Westin, J.; Link, B.K.; Hay, A.; Cerhan, J.R.; Zhu, L.; et al. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study. Blood 2017, 130, 1800–1808. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Barta, S.K. Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment. Am. J. Hematol. 2019, 94, 604–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galluzzi, L.; Vitale, I.; Warren, S.; Adjemian, S.; Agostinis, P.; Martinez, A.B.; Chan, T.A.; Coukos, G.; Demaria, S.; Deutsch, E.; et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer 2020, 8, e000337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 2017, 17, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013, 31, 51–72. [Google Scholar] [CrossRef] [PubMed]
- Bommareddy, P.K.; Shettigar, M.; Kaufman, H.L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol. 2018, 18, 498–513. [Google Scholar] [CrossRef] [PubMed]
- Fucikova, J.; Kepp, O.; Kasikova, L.; Petroni, G.; Yamazaki, T.; Liu, P.; Zhao, L.; Spisek, R.; Kroemer, G.; Galluzzi, L. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020, 11, 1013. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Waxman, D.J. Medium dose intermittent cyclophosphamide induces immunogenic cell death and cancer cell autonomous type I interferon production in glioma models. Cancer Lett. 2020, 470, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Kopecka, J.; Godel, M.; Dei, S.; Giampietro, R.; Belisario, D.C.; Akman, M.; Contino, M.; Teodori, E.; Riganti, C. Insights into P-Glycoprotein Inhibitors: New Inducers of Immunogenic Cell Death. Cells 2020, 9, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schcolnik-Cabrera, A.; Oldak, B.; Juárez, M.; Cruz-Rivera, M.; Flisser, A.; Mendlovic, F. Calreticulin in phagocytosis and cancer: Opposite roles in immune response outcomes. Apoptosis 2019, 24, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, G.; Chen, Y.; Wang, H.; Hua, Y.; Cai, Z. Immunogenic cell death in cancer therapy: Present and emerging inducers. J. Cell Mol. Med. 2019, 23, 4854–4865. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.D.; Agostinis, P. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses. Immunol. Rev. 2017, 280, 126–148. [Google Scholar] [CrossRef] [PubMed]
- Panaretakis, T.; Kepp, O.; Brockmeier, U.; Tesniere, A.; Bjorklund, A.C.; Chapman, D.C.; Durchschlag, M.; Joza, N.; Pierron, G.; van Endert, P.; et al. Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 2009, 28, 578–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chandra, V.; Riquelme Sanchez, E.; Dutta, P.; Quesada, P.R.; Rakoski, A.; Zoltan, M.; Arora, N.; Baydogan, S.; Horne, W.; et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J. Exp. Med. 2020, 217, e20190354. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.D.; Krysko, D.V.; Verfaillie, T.; Kaczmarek, A.; Ferreira, G.B.; Marysael, T.; Rubio, N.; Firczuk, M.; Mathieu, C.; Roebroek, A.J.; et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 2012, 31, 1062–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mine, K.L.; Tedesco-Silva, H.; Mourão, T.B.; Campos, E.F.; Salzedas, L.A.; Aguiar, B.; Felipe, C.R.; Medina-Pestana, J.O.; Gerbase-DeLima, M. Heightened expression of HLA-DQB1 and HLA-DQB2 in pre-implantation biopsies predicts poor late kidney graft function. Hum. Immunol. 2018, 79, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Reeves, E.; Islam, Y.; James, E. ERAP1: A potential therapeutic target for a myriad of diseases. Expert Opin. Ther. Targets 2020, 24, 535–544. [Google Scholar] [CrossRef] [PubMed]
Variables | Training Set GSE31312 (n = 415) | Validation Set GSE10846 (n = 320) | ||
---|---|---|---|---|
NO. | % | NO. | % | |
Age | ||||
≤60 | 173 | 41.7 | 152 | 47.5 |
>60 | 242 | 58.3 | 168 | 52.5 |
Gender | ||||
Male | 238 | 57.3 | 171 | 53.4 |
Female | 177 | 42.7 | 134 | 41.9 |
NA | 0 | 15 | 4.7 | |
ECOG | ||||
1–2 | 346 | 83.4 | 244 | 76.3 |
3–4 | 69 | 16.6 | 76 | 23.8 |
Ann Anbor stage | ||||
I–II | 200 | 48.2 | 151 | 47.2 |
III–IV | 215 | 51.8 | 169 | 52.8 |
Extranodal sites | ||||
<2 | 323 | 77.8 | 297 | 92.8 |
≥2 | 92 | 22.2 | 23 | 7.2 |
LDH | ||||
Normal | 145 | 34.9 | 163 | 50.9 |
Elevated | 270 | 65.1 | 157 | 49.1 |
COO | ||||
GCB | 206 | 49.6 | 142 | 44.4 |
Non-GCB | 209 | 50.4 | 178 | 55.6 |
Variables | Low-Risk Group (n = 208) | High-Risk Group (n = 207) | |||
---|---|---|---|---|---|
NO. | % | NO. | % | p | |
Age | 0.797 | ||||
≤60 | 88 | 42.3 | 85 | 41.1 | |
>60 | 120 | 57.7 | 122 | 58.9 | |
Gender | 0.212 | ||||
Male | 113 | 54.3 | 125 | 60.4 | |
Female | 95 | 45.7 | 82 | 39.6 | |
ECOG | 0.141 | ||||
1–2 | 179 | 86.1 | 167 | 80.7 | |
3–4 | 29 | 13.9 | 40 | 19.3 | |
Ann Anbor stage | |||||
I–II | 108 | 51.9 | 92 | 44.4 | 0.127 |
III–IV | 100 | 48.1 | 115 | 55.6 | |
Extranodal sites | 0.031 | ||||
<2 | 171 | 82.2 | 152 | 73.4 | |
≥2 | 37 | 17.8 | 55 | 26.6 | |
LDH | 0.131 | ||||
Normal | 80 | 38.5 | 65 | 31.4 | |
Elevated | 128 | 61.5 | 142 | 68.6 | |
COO | 0.000 | ||||
GCB | 123 | 59.1 | 83 | 40.1 | |
Non-GCB | 85 | 40.9 | 124 | 59.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ping, L.; He, Y.; Gao, Y.; Wang, X.; Huang, C.; Bai, B.; Huang, H. Immunogenic Cell Death (ICD)-Related Gene Signature Could Predict the Prognosis of Patients with Diffuse Large B-Cell Lymphoma. J. Pers. Med. 2022, 12, 1840. https://doi.org/10.3390/jpm12111840
Ping L, He Y, Gao Y, Wang X, Huang C, Bai B, Huang H. Immunogenic Cell Death (ICD)-Related Gene Signature Could Predict the Prognosis of Patients with Diffuse Large B-Cell Lymphoma. Journal of Personalized Medicine. 2022; 12(11):1840. https://doi.org/10.3390/jpm12111840
Chicago/Turabian StylePing, Liqin, Yanxia He, Yan Gao, Xiaoxiao Wang, Cheng Huang, Bing Bai, and Huiqiang Huang. 2022. "Immunogenic Cell Death (ICD)-Related Gene Signature Could Predict the Prognosis of Patients with Diffuse Large B-Cell Lymphoma" Journal of Personalized Medicine 12, no. 11: 1840. https://doi.org/10.3390/jpm12111840
APA StylePing, L., He, Y., Gao, Y., Wang, X., Huang, C., Bai, B., & Huang, H. (2022). Immunogenic Cell Death (ICD)-Related Gene Signature Could Predict the Prognosis of Patients with Diffuse Large B-Cell Lymphoma. Journal of Personalized Medicine, 12(11), 1840. https://doi.org/10.3390/jpm12111840